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bstract
We present a finite element numerical study of heat transfer in lid driven channels with fully developed axial flow for non-Newtonian power law
uids. The effect of channel aspect ratio and material properties on temperature distribution and wall heat transfer are studied. The results show

hat in comparison with Newtonian fluids the shear thinning property of the fluids acts to reduce the local viscous dissipative heating and as a result
he axial local fluid temperature is reduced. Applications of the results to scraped-surface heat exchanger design and operation are recommended.
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. Introduction

This study concerns flow and heat transfer in lid driven chan-
els. As well as a purely theoretical importance (Shankar &
eshpande, 2000), such flows are directly relevant to many com-
lex industrial applications, such as screw extruders (Kokini, Ho,

Karwe, 1992) and scraped-surface heat exchangers (SSHEs)
Harrod, 1986). Though there are major differences between all
f these industrial processes, they may be classified together in
he sense that the flows involved can almost invariably be char-
cterised as low Reynolds number/high Prandtl number flows
f highly viscous non-Newtonian fluids. Many previous studies
ave concerned such flows. Numerous 2D studies examined the
ow of Newtonian fluids in lid driven cavities (see, for exam-
le, Burggraf, 1966; Nallasamy & Prasad, 1977; Pan & Acrivos,
967). A range of non-Newtonian materials, such as viscoelas-
ic fluids (Grillet, Yang, Khomani, & Shaqfeh, 1999), Bingham
uids (Mitsoulis & Zisis, 2001) and power law fluids (Martin,
969) have also been analysed in a two-dimensional setting.

hough such studies can contribute much understanding, for
on-Newtonian fluids the tangential and the axial flows in such
evices are coupled. It is therefore important to know the con-
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equences of axial flow and, in particular, how the tangential
cross) flow interacts with the axial flow. Asymptotic results for
three-dimensional isothermal flow in an SSHE were derived

y Fitt & Please (2001) and Karwe & Jaluria (1990) carried out
umerical studies of heat transfer within a single screw extruder.
n both Fitt & Please (2001) and Karwe & Jaluria (1990), sim-
lifications were made by assuming creeping flow of power law
uids with small annular-gap/perimeter ratios so that the side-
all effects could be neglected.
The role of viscous dissipation in steady-state 2D forced con-

ection heat transfer was investigated numerically for lid driven
avities (Sun et al., submitted for publication). A further study
Sun et al., 2004) extended the work of Sun et al., submitted for
ublication to include the effects of shear thinning and realistic
SHE geometry. A key conclusion from Sun et al., submitted for
ublication was that, at the singularity corners of the flow region,
he apparent viscosity, fluid temperature and viscous dissipation
ere all smaller for shear thinning fluids compared to the New-

onian case. Quasi-three-dimensional effects (i.e. assuming an
xial hydrodynamic fully developed flow) were included in a
umerical study of an isothermal lid driven channel in Sun et
l. (2006). The results reported in Sun et al. (2006) showed that

or hydrodynamic fully developed flow, both the pressure drop
nd flow field were dependent on the channel aspect ratio, power
aw index, the tangential and axial Reynolds numbers and their
atios. Similar to previously reported results in ducts (see, for
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Nomenclature

A channel aspect ratio H/L
Br Brinkman number Br = μFU2/k�T
c1 and c2 constants in viscosity model (5)
Cp specific heat at constant pressure (J/(kg K))
dij infinitesimal rate-of-strain tensor

1/2(∂ui/∂xj + ∂uj/∂xi)
Dh hydraulic diameter 2HL/(H + L) (m)
f friction factor
H channel height (m)
I2 second invariant of the rate of deformation tensor

2dijdij (s−2)
k thermal conductivity (W/m K)
L lid side channel length (m)
m consistency index (Pa sn)
n shear thinning or power law index
Nu local axial averaged heat flux on the lid

Nu = ∫ 1
0 q∗ dx∗

Num modified local axial averaged heat flux on the lid
Num = (Tin − Tw)/(Tm − Tw)Nu

p pressure (N/m2)
−pz axial pressure gradient (N/m3)
PeU U-Peclet number PeU = ReUPr = ρULCp/k
PeW W-Peclet number PeW = ReWPr = ρWLCp/k
Pr Prandtl number Pr = CpμF/k
q heat flux (W/m2)
q* non-dimensional local axial lid heat flux

q* = qL/k�T = −∂T*/∂y*|y*=A

ReU Reynolds number ReU = ρUL/μF
ReW Reynolds number ReW = ρWL/μF
S channel cross-sectional area (m2)
T temperature (◦C)
Tin inlet temperature (◦C)
Tm fluid bulk–mean temperature (◦C)
Tw lid temperature (◦C)
�T temperature difference magnitude |Tin − Tw| (◦C)
u x-component of velocity (m/s)
U lid velocity (m/s)
v y-component of velocity (m/s)
w z-component of velocity (m/s)
W average axial velocity (m/s)
x, y, z cartesian coordinates (m)
Z non-dimensional thermal axial distance

Z = z/(DhPew)

Greek symbols
α velocity ratio or Reynolds number ratio W/U
Γ shear rate (s−1)
μ absolute dynamic viscosity (Pa s)
μF characteristic dynamic viscosity (Pa s)
ρ density (kg/m3)

Superscript
* non-dimensional value
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xample, Hartnett & Kostic, 1989), though this study concerned
urbulent rather than laminar flow), the results of Sun et al. (2006)
lso confirmed that for (laminar) flow in a lid driven channel a
otable “drag reduction effect” (resulting in a reduced axial pres-
ure gradient) was found with shear thinning power law fluids.
owever, at high tangential Reynolds numbers it was also found

hat the tangential flow causes strong distortion in the axial flow
o that the drag reduction effect was reduced or even reversed.

The current study further generalises the work discussed
bove by considering quasi-3D heat transfer for power law flu-
ds in lid driven channels with hydrodynamic fully developed
aminar flow. The general modus operandi is as follows: under
he assumption of a temperature independent viscosity, the fully
eveloped velocity field may be determined first (decoupled with
emperature) as in Sun et al. (2006). Neglecting the axial con-
uction term in the energy equation, the temperature field is then
alculated using a marching scheme.

Consistency checks are carried out by comparing the numer-
cal results with available published results. The computations
over a range of physical and non-dimensional parameters,
ncluding power law index, channel aspect ratio, tangential
elocity, Brinkman number, axial Peclet number and thermal
oundary (heating/cooling) conditions. In each case, the tem-
erature distributions, axial local average temperature and axial
ocal heat flux are given. The main aim of the work is to under-
tand the characteristics of heat transfer in a lid driven device
uch as an SSHE when the effects of wall heating, (quasi-3D),
ully developed axial flow and the presence of shear-thinning
uids must all be taken into account.

. Differential equations and numerical procedure

.1. Governing equations

Typical fluids processed in SSHEs and extruders are charac-
erised by relatively large viscosities and high Prandtl numbers.
n important consequence of this is that the thermal boundary

ayer is much thinner than the velocity boundary layer. For this
eason, the assumption that the velocity profile is fully developed
efore the fluid enters the heating zone is justified. For materials
ith temperature independent viscosity, this further implies that

he velocity field does not change with either axial location or
hermal boundary conditions.

.1.1. Flow equations and boundary conditions
A rectangular coordinate system is used with origin at the

pstream bottom left hand corner of the channel (see Fig. 1 for
etails). The x–y plane is normal to the axial flow direction and
he z-axis is in the direction of the axial flow. The velocity com-
onents are denoted by u, v and w, respectively. The channel lid,
f width L, is located at the top of the channel (y = H) and moves
ith speed U in the positive x direction. The channel aspect

atio is denoted by A = H/L. Representative velocity scales are

he lid velocity U (for the tangential velocity components u and
), and the average axial velocity W (for the axial velocity com-
onent w). The scales for length and pressure are the lid length
and μFU/L, respectively. We also assume that a characteristic
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ig. 1. (a) Schematic view and coordinate system and (b) magnified view of
orner mesh concentration near sidewall/lid corner.

iscosity μF is the viscosity at a given shear rate:

=
((

U

L

)2

+
(

W

L

)2
)1/2

.

Throughout this study, we assume that the characteristic vis-
osity μF is independent of temperature so that the momentum
nd the energy equations can be decoupled. (Although many
f the materials processed in SSHEs in reality have strongly
emperature-dependent viscosities, in the current study we wish
o concentrate particularly on shear-thinning effects.) Assuming
laminar, steady flow of an incompressible viscous fluid with

ully developed axial flow in an infinitely long channel, it is rea-
onable to assume that all the velocity components are functions
f x and y only. The z-momentum equation then shows that the
xial pressure gradient is also independent of z. At any cross-
ection in the x–y plane, the governing equations for the velocity
nd pressure are therefore:

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0, (1)

eU

(
u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗

)

= −∂p∗

∂x∗ + ∂

∂x∗

(
μ

μF

∂u∗

∂x∗

)
+ ∂

∂y∗

(
μ

μF

∂u∗

∂y∗

)
, (2)

eU

(
u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗

)

= −∂p∗

∂y∗ + ∂

∂x∗

(
μ

μF

∂v∗

∂x∗

)
+ ∂

∂y∗

(
μ

μF

∂v∗

∂y∗

)
, (3)

eU

(
u∗ ∂w∗

+ v∗ ∂w∗)

∂x∗ ∂y∗

= fReW + ∂

∂x∗

(
μ

μF

∂w∗

∂x∗

)
+ ∂

∂y∗

(
μ

μF

∂w∗

∂y∗

)
. (4)
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ere, asterisk indicates that the variables are in their
on-dimensional form, ReU = ρUL/μF is the tangential flow
eynolds number and ReW = ρWL/μF is the axial flow Reynolds
umber (which may also be thought of as a non-dimensional
xial volume flux). The non-dimensional axial pressure gradient
r friction factor is denoted by f = −pzL/ρW2, and the frictional
ressure gradient is defined by:

ReW = −pzL
2

μFW
.

We define the velocity (or Reynolds number) ratio as
= W/U = ReW/ReU. In most industrial applications, such as
SHEs and screw extruders, the tangential flow is dominant, the
xial velocity often being less than 1/5 of the tangential velocity.
elocity ratios of 0.2 were therefore used for the results calcu-

ated in Section 3.
The boundary conditions in the plane of the tangential flow

re u* = 1, v∗ = w∗ = 0 at the channel lid, and u∗ = v∗ = w∗ =
at the other channel walls.
For the viscosity, we assume a generalized shear thinning

ower law: μ = mI
(n−1)/2
2 . Here, I2 is the second invariant of

he shear rate tensor and m and n are the consistency index (Pa sn)
nd shear-thinning index, respectively. A typical value of n for
ood materials processed in SSHEs such as fruit jam, peanut but-
er, etc., is 0.33 (see, for example, Fitt & Please, 2001). The value
= 1.0 (Newtonian fluid) is also considered for completeness.
on-dimensionalized by the characteristic viscosity

F = m

((
U

L

)2

+
(

W

L

)2
)(n−1)/2

,

he final form of the viscosity is:

μ

μF
=
(

I∗
2

1 + α2 + c1

)(n−1)/2

+ c2 (5)

here

∗
2 =

(
2

(
∂u∗

∂x∗

)2

+ 2

(
∂v∗

∂y∗

)2

+
(

∂u∗

∂y∗ + ∂v∗

∂x∗

)2

+ α2
(

∂w∗

∂x∗

)2

+ α2
(

∂w∗

∂y∗

)2
)

nd

2 = U2

L2 I∗
2 .

The constants c1 and c2 are included in Eq. (5) to ensure
hat the viscosity is non-zero and finite everywhere. Values
f c1 = 0.000001 and c2 = 0.0001 were used for all computa-
ions; numerical experiments show that this modification has
n insignificant effect on the viscosity whilst giving physically
easonable viscosity values.
.1.2. Energy equation and thermal boundary conditions
We assume that the entering stream has a uniform temperature

in, the lid temperature is maintained at a constant temperature
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w, the other walls are adiabatic and the axial conduction term
an be neglected. The non-dimensional temperature is defined as
* = (T − Tw)/�T, where �T = |Tin − Tw|. (The absolute value

s used so that the value of Brinkman number is positive for
oth cooling and heating.) The thermal properties of the flow
re determined by heating or cooling from the lid, heat carried
y the fluid and the heat generated by viscous dissipation. The
on-dimensional energy equation is:

PeU

(
u∗ ∂T ∗

∂x∗ + v∗ ∂T ∗

∂y∗

)
+ PeWw∗ ∂T ∗

∂z∗

= ∂2T ∗

∂x∗2 + ∂2T ∗

∂y∗2 + Br

(
μ

μF

)
I∗

2 (6)

here PeU and PeW are the Peclet numbers corresponding to the
angential and axial flows, respectively (see nomenclature table
or definitions) and Br is the Brinkman number Br = μFU2/k�T.

The thermal boundary conditions are that the lid y* = A is
sothermal (T* = 0 at y* = A), the other channel walls are adia-
atic (∂T*/∂x* = 0 at x* = 0 and 1, ∂T*/∂y* = 0 at y* = 0). At z* = 0,
he initial condition is that T = Tin, so that T* = 1 (Tin > Tw for
ooling) and T* = −1 (Tin < Tw for heating).

.1.3. Local axial heat flux
At a given axial location, the lid heat flux (a localised quan-

ity) and fluid bulk–mean temperature (which involves the whole
f the cross-sectional area) provide two related but different
easures of the local heat transfer between the lid and the
uid. The local axial lid heat flux at a location z is defined as
= −k(∂T/∂y)|y=H. The fluid bulk–mean temperature Tm is an
xial/longitudinal flow-weighted average of the local fluid tem-
erature defined for a given channel cross-sectional area S by:

m =
∫
S
wT dS∫

S
w dS

.

In contrast to the dimensionless hydrodynamic axial distance
* = z/L, the dimensionless thermal axial distance is defined as
= z/(DhPew) where Dh is the hydraulic diameter 2HL/(H + L).
any of the results presented below will be plotted as a function

f Z rather than z*, since this is the natural axial coordinate as
ar as heat transfer is concerned. The dimensionless local axial
eat flux on the lid is q* = qL/k�T = −∂T*/∂y*|y*=A; q* will be
ositive for cooling and negative for heating conditions. The
ocal axial lid heat flux Nu refers to the averaged value of q* on
he lid and is defined by Nu = ∫ 1

0 q∗ dx∗.
As described above, in the current computations the effects

f temperature on the fluid viscosity have been neglected. The
eat produced by viscous dissipation therefore depends only
n the velocity field and the Brinkman number, and has the
ame magnitude for both heating and cooling conditions. With-
ut viscous dissipation (Br = 0), the absolute value of local lid
eat flux is the same for heating and cooling conditions. Far

nough downstream, the bulk fluid temperature will eventually
each the lid temperature. The thermally fully developed value
f Nu will therefore be zero and independent of the fluid proper-
ies and operation conditions. A modified non-dimensional lid

r
S
fl
P

cal Engineering 31 (2006) 32–40 35

eat flux may be defined by Num = (Tin − Tw)/Nu(Tm − Tw). In
ontrast to Nu, at thermally fully developed conditions, Num is
non-zero constant whose value depends on power law index,
rinkman number etc. Note, however, that if viscous dissipation

s present (Br �= 0), then at sufficiently large axial locations the
uid bulk–mean temperature will eventually reach and exceed

he lid temperature (The initial heating will change to cooling of
he fluid) so that Num will be singular at Tm = Tw. In the current
tudy viscous dissipation plays an important role (Br �= 0) so
ost of the results are presented in terms of Nu (though we also

se Num for comparison purposes). Unless otherwise specified,
ll results presented in this text are given as non-dimensional
alues with the asterisk is omitted for brevity.

.2. Numerical formulation and solution procedure

To solve Eqs. (1)–(4) and (6) numerically, we used the
ommercial finite element partial differential equation solver
astfloTM (Fastflo, 2000). It should be stressed that this is not a
black box” CFD package. Appropriate numerical methods have
o be selected and implemented by the user. The basic method-
logy used for the velocity computations is the same as that used
n previous studies (see Sun et al., 2006 for a detailed discus-
ion). A mesh of 3470 six-noded triangular elements was used,
he mesh being concentrated at all boundaries and singularity
orners. An illustrative diagram of the mesh concentration at
sidewall/lid interface is shown in Fig. 1b. Once the velocity

as been determined, the temperature may be calculated from
he energy equation and associated boundary conditions using a

arching scheme. At the inlet to the channel a sudden change of
emperature will occur owing to the fact that the lid temperature
w and the inlet temperature Tin are in general different. If a sim-
le scheme such as the Crank–Nicolson algorithm is used here
t is known that axial heat flux oscillations may occur. To avoid
uch undesirable effects, we therefore used an implicit Euler
cheme (see, for example, Sun et al., submitted for publication).
n all computations, the axial increment step was determined
hrough numerical experiments to ensure reliable results.

To check our numerical procedure, computations were first
ade in a square duct without viscous dissipation (i.e. a square

avity with a stationary lid with ReU = 0 and Br = 0). To allow
omparisons with published data, the thermal boundary con-
itions in this case were specified with all the walls heated at
constant temperature Tw. In a duct with hydrodynamic fully

eveloped laminar flow and with temperature independent vis-
osity, the magnitude of local axial heat flux is the same (i.e.
ndependent of PeW) at the same dimensionless thermal axial
ocation Z (Hartnett & Kostic, 1989). The local axial heat flux
ncreases with decreasing shear thinning index n and decreasing
uct aspect ratio A. For n = 1 and 0.5, a comparison between our
omputed results and the computational results of Chandrupatla
nd Sastri (1997) of axial local heat flux Num is shown in Fig. 2.
t is seen that very good agreement is obtained between the cur-

ent computations and the published results (Chandrupatla &
astri, 1997). In the absence of viscous heating, the wall heat
ux is primarily a function of the near wall velocity gradient.
redictably, therefore, the results of Fig. 2 show that the wall
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ig. 2. Modified wall heat flux Num in duct flow. Lines: computed values; sym-
ols: Chandrupatla and Sastri (1997).

eat flux (Num) is therefore higher for more strongly shear thin-
ing fluids (where larger near wall velocity gradients are present)
han for Newtonian fluids.

.3. Numerical convergence

A brief discussion on numerical convergence is apposite: the
ork reported here is essentially a non-isothermal extension of

he work contained in Sun et al. (2006), where many of the key
ssues regarding both convergence and accuracy are discussed

ore fully. As in Sun et al. (2006), the sensitivity of the results
o the mesh size and convergence criteria were checked in some
etail. Richardson extrapolation was applied to the values of the
ressure gradient for a group of four selected grids to obtain
final value or higher accuracy than that for even the finest

rid. In this way, it was determined that the mesh concentration
escribed above and illustrated in Fig. 1b, along with a mesh
f 3470 six-noded triangular elements led to results that pro-
ided sufficient resolution at the centre of the channel, while
lso allowing suitable resolution in the boundary layers for the
eynolds numbers covered in these computations.

As in Sun et al. (2006), numerical experiments showed that
he results and the convergence were not very sensitive to the
nitial distributions of the axial and tangential velocity: the com-
utational time required depends mainly on the channel aspect
atio and the Peclet number.

. Results and discussion

For power law fluids, the non-dimensional parameters are
nterdependent. For instance, if the lid velocity is altered then the
eynolds number, Peclet number and Brinkman number will all

e different. Parametric studies were therefore carried out in two
ifferent ways. One was to change individual non-dimensional
uantities. The other was to change individual physical param-
ters for scale-up purposes.

fl
r

v

ig. 3. Effect of Br and thermal boundary conditions on lid heat flux for power
aw fluids with n = 0.33. Heating (H) and Cooling (C): ReU = 10, PeW = 100,
= 0.5 and W/U = 0.2: (a) Nu vs. Z and (b) Num vs. Z.

.1. The effect of viscous dissipation on heat transfer for
= 0.33 and 1.0

The effects of viscous dissipation (Brinkman number) and
eating/cooling on Nu and Num (for Re = 10, PeW = 200) are
hown for power law fluids (n = 0.33) as a function of distance
long the channel in Fig. 3. Equivalent results for Newtonian
uids (n = 1.0) are shown in Fig. 4. (Because of the singularity

n Num described in Section 2.1.3 above, only cooling conditions
re shown in Figs. 3b and 4b.)

Without viscous heating (Br = 0), the absolute value of the
all heat flux Nu should be the same for heating or cooling, a
ypothesis confirmed by the results of Figs. 3 and 4. For non-
ero viscous dissipation, extra heat needs to be taken out of the
id to cool the fluid material while less heat input is required to
eat up the fluid material. Therefore, for a given axial flow and
xed values of n, A, Re and Pr, the local axial lid heat flux Nu
hould increase with increasing Brinkman number. Figs. 3 and 4
how that this effect is much more pronounced for Newtonian

ow (Fig. 4), where the dissipation is larger in the near-corner
egions.

We also note that for Br = 0, the “fully developed” (Z → 1)
alue of Num is smaller for n = 1.0 (Fig. 4) than n = 0.33 (Fig. 3);
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ig. 4. Effect of Br and thermal boundary conditions on lid heat flux for New-
onian fluids with n = 1.0. Heating (H) and cooling (C): ReU = 10, PeW = 100,
= 0.5 and W/U = 0.2. (a) Nu vs. Z and (b) Num vs. Z.

his is consistent with the duct flow results in Fig. 2. However,
ith viscous heating (Br = 0.4167), this effect appears to reverse

ince now Num is larger for Newtonian than non-Newtonian
ow. This phenomenon may again be ascribed to the larger heat
issipation in the near-corner regions that may be expected in
ewtonian fluids.
Fig. 5 shows the bulk–mean temperature Tm (for the same

onditions as Figs. 3 and 4) when viscous heating is present
Br = 0.4167). The result that the wall heat flux Nu at a given axial
ocation Z is lower for power-law fluids than for the case n = 1
see Figs. 3 and 4) is repeated in the corresponding bulk–mean
emperature in Fig. 5.

Moreover, when comparing the lid heat fluxes for Br = 0.4167
nd Br = 0 in Figs. 3 and 4, a bigger difference is found for n = 1.0
han for n = 0.33 for the same thermal boundary condition (heat-
ng or cooling). This difference is once again a manifestation
f the details of shear-thinning flow; in the energy equation, the
iscous dissipation term is determined by local velocity gradi-
nts and the local effective viscosity. In a lid driven channel,

lose to the singularity corners the velocity gradients are very
igh. The viscous dissipation is therefore relatively large for
onstant viscosity Newtonian fluids. However, for shear thin-
ing fluids the local effective viscosity is reduced in high shear

(
B
o
s

ig. 5. Effect of n on fluid bulk–mean temperature. Heating (H) and cooling
C): ReU = 10, Br = 0.4167, PeW = 100, A = 0.5 and W/U = 0.2.

egions, and the combined effects of high shear and low vis-
osity result in smaller viscous dissipation. This is consistent
ith the 2D results in (Sun et al., 2004; Sun et al., submitted for
ublication). This effect is important in the general context of
SHEs and such devices, for it explains the experimental results
f Harrod (1986) in SSHEs. These showed that heat transfer is
ifferent for heating and cooling conditions with bigger differ-
nces found for Newtonian fluids. It is not surprising that these
esults are also supported by numerical results for creeping flow
n a single screw extruder in Karwe and Jaluria (1990).

Finally, Figs. 3 and 4 also show that the values of Nu decrease
n magnitude as the thermal boundary layer thickens in the axial
irection, and, for heating, the sign of the lid heat flux changes
rom negative at the thermal entrance region to positive for the
hermally fully developed case. The behaviour of the param-
ter Num is somewhat different, however, for in all the four
ases considered we observe a local maximum in Num at about
= 0.05. Our numerical experiments show that the shape of the
um curve varies with the channel aspect ratio and the Peclet
umber. The peak coincides with the temperature distributions
t specific downstream axial locations where, due to tangential
irculation, fresh fluid material with a temperature close to the
nlet temperature is moved closer to the heat transfer surface at
he lid. This coincides with a sharp reduction in both the results
or Nu (Figs. 3 and 4), and those for Tm (Fig. 5). The existence
nd axial location of this peak and the associated sudden drop in
u is evidently an important matter for those who both design
nd operate SSHEs and other related devices.

.2. The effect of specific heat, channel aspect ratio,
haracteristic viscosity and lid velocity on heat transfer

In Figs. 6–8, results are presented in terms of dimensional
uantities to indicate the range of interest for scale-up.

Fig. 6a quantifies the effects of variable Peclet number PeW
i.e. change of specific heat Cp) on the lid heat flux Nu for

cooling of) power law fluids with n = 0.33 at ReU = 10 and
r = 0.4167 (U = 1.0 and W = 0.2). In the thermal entrance region
f a lid driven channel, the local axial lid heat flux is evidently
trongly dependent on the Peclet number. For PeW = 2000, the
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ig. 6. Lid heat flux Nu for cooling of power law fluids with n = 0.33, ReU = 10,
r = 0.4167 and W/U = 0.2: (a) effect of Peclet number PeW and (b) effect of
avity aspect ratio A.

eat flux is virtually constant for Z < 0.005. It then decreases
apidly before reaching its fully developed value at about Z = 0.3.
or PeW = 100, a decrease in lid heat flux is apparent in the

hermal entrance region before a plateau is again reached at
bout Z = 0.05; thereafter a rapid decrease in lid heat flux again
akes place. For PeW = 20, the “plateau” effect is much less pro-
ounced and the lid heat flux decreases both more smoothly and
apidly before the thermally fully developed value is attained.
he Peclet number measures the relative importance of convec-

ion and conduction in the overall heat transfer process. For large
eW convection dominates and the flow is composed largely of
losed streamlines; the tangential (u,v) flow constantly transfers

resh liquid to the lid region so that high local heat transfer effects
an persist. As PeW decreases the heat is able to penetrate into
he centre of the cavity much faster thereby reducing the local
id heat transfer for small Z. This behaviour is clarified by the

s
(
t
T

ig. 7. Fully developed temperature distributions for power law fluids with
= 0.33 and ReU = 10, Br = 0.4167, A = 0.5, W/U = 0.2: (top; PeW = 20), (cen-

re; PeW = 100) and (bottom; PeW = 2000).

hermally developed temperature distributions corresponding to
ig. 6a which are shown in Fig. 7. The virtually closed temper-
ture contours for PeW = 2000 indicate that the heat is trapped
nd that the tangential flow contains stagnation zones (see Sun
t al., 2006). It should be noted that the results of Fig. 6a not only
how different heat transfer characteristics for the duct flow con-

idered earlier but are also different from the 2D results of both
Sun et al., 2004; Sun et al., submitted for publication) where
he lid heat flux was found to be independent of Peclet number.
he differences may be ascribed to the fact that in the hydro-
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ig. 8. Lid heat flux Nu for cooling of power law fluids with n = 0.33, A = 0.2 and
r = 0.4167: (top) effect of viscosity (μ = μF) and (bottom) effect of lid speed
.

ynamic and thermally developed 2D cases (Sun et al., 2004;
un et al., submitted for publication) axial flow is neglected, and

he tangential convection contributes only to the internal circu-
ation, making no net contribution to the total heat transfer. In
he quasi-3D case, where the axial and tangential flows inter-
ct, heat convected upstream also contributes to the total heat
ransfer.

Fig. 6b shows that the lid heat flux increases as the channel
spect ratio A = H/L decreases. The plateau regions present in
ach of the curves once again indicate regions where the heat
ransfer is dominated by convection. The lid heat flux begins to
ecrease at a smaller value of Z for channels with larger values of
. For “thin” channels where A is small, an equilibrium temper-
ture is reached more quickly; this is consistent with the results
f Fig. 6b where, for a fixed value of Z, Nu is larger for channels

ith more extreme aspect ratios (i.e. smaller values of A).
Finally, the effect of characteristic viscosity μF (i.e. change

n consistency index) and lid speed U on lid heat flux Nu are
hown in Fig. 8. The lid heat flux is found to increase both with

F
F
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ncreasing characteristic viscosity and increasing lid speed. The
ow familiar plateau regions for small Z are also clearly present.

. Conclusions

Finite element methods have been successfully used to study
eat transfer for power law materials in lid driven channels
ith fully developed axial flow. Where comparison is pos-

ible, very good agreement is found between the numerical
esults and previously published data. Close to the singularity
orners the velocity gradients are very large. For constant vis-
osity Newtonian fluids the viscous dissipation is therefore also
ery large. However, for shear thinning fluids the viscosity is
educed in high shear regions and the combined effects of high
hear and low viscosity result in smaller viscous dissipation in
hear thinning fluids than in Newtonian fluids. The fully devel-
ped wall heat flux and fluid temperature are therefore larger
or Newtonian fluids than for shear thinning fluids. A practi-
al consequence of this fact is that, for a given channel length
he temperature at outlet is higher for Newtonian fluids than for
hear thinning fluids.

Our results further show that the lid heat flux is dependent
n the Peclet number. It increases as the viscosity increases, the
id velocity increases, and the channel aspect ratio decreases.

hen the Peclet number is large, extra mixing is required to
emove heat trapped inside the circulation zones. Therefore to
aintain a high lid heat flux a short heating section length is rec-

mmended. Another general trend to emerge from the results
resented here is that, if accurate predictions of heat trans-
er are required, the coupling between the tangential and axial
ows must be accounted for. 2D calculations cannot provide this
nd are therefore clearly insufficiently sophisticated if accurate
uantitative results are required.

Finally, we note that in a real SSHE fluid leakage through the
idewalls may be present (for example, from adjoining cham-
ers). If the associated effects of such flows are important, then
t appears that there is little alternative to undertaking a full 3D
nalysis.

cknowledgements

This research is supported by The University of Reading and
hemtech International, Reading. The authors are grateful for
elpful insights provided by Dr. N. Hall-Taylor of Chemtech
nternational and Professor M. Baines of Reading University.

eferences

urggraf, O. R. (1966). Analytical and numerical studies of the structure of
steady separated flows. Journal of Fluid Mechanics, 24, 113–151.

handrupatla, A. R., & Sastri, V. M. K. (1997). Laminar forced convective heat
transfer of a non-Newtonian fluid in a square duct. International Journal of

Heat and Mass Transfer, 20, 1315–1324.

astflo Tutorial Guide V3. (2000). Oxford, Numerical Algorithms Group.
itt, A. D., & Please, C. P. (2001). Asymptotic analysis of the flow of shear-

thinning food stuffs in annular scraped heat exchangers. Journal of Engi-
neering Mathematics, 39, 345–366.



4 hemi

G

H

H

K

K

M

M

N

P

S

S

S

transfer with viscous dissipation in lid driven cavities. AIChE Journal.
0 K.-H. Sun et al. / Computers and C

rillet, A. M., Yang, B., Khomani, B., & Shaqfeh, E. S. G. (1999). Modelling of
viscoelastic lid driven cavity flow using finite element simulations. Journal
of Non-Newtonian Fluid Mechanics, 88, 99–131.

arrod, M. (1986). Scraped surface heat exchangers—A literature survey of
flow patterns, mixing effects, residence time distribution, heat transfer and
power requirements. J. Food. Process. Eng., 9, 1–62.

artnett, J. P., & Kostic, M. (1989). Heat transfer to Newtonian and non-
Newtonian fluids in rectangular ducts. Advances in Heat Transfer, 19,
247–356.

arwe, M. V., & Jaluria, Y. (1990). Numerical simulation of fluid flow and heat
transfer in a single screw extruder for non-Newtonian fluids. Numerical Heat
Transfer A, 17, 167–190.

okini, J. L., Ho, C.-T., & Karwe, M. V. (Eds.). (1992). Food extrusion science

and technology. New York: Marcel Dekker, Inc.

artin, B. (1969). Numerical studies of steady state extrusion process. Ph.D.
thesis. Cambridge University.

itsoulis, E., & Zisis, T. (2001). Flow of Bingham plastics in a lid driven cavity.
Journal of Non-Newtonian Fluid Mechanics, 101, 173–180.

S

cal Engineering 31 (2006) 32–40

allasamy, M., & Prasad, K. K. (1977). On cavity flow at high Reynolds num-
bers. Journal of Fluid Mechanics, 79, 391–414.

an, F., & Acrivos, A. (1967). Steady flows in rectangular cavities. Journal of
Fluid Mechanics, 28, 643–655.

hankar, P. N., & Deshpande, M. D. (2000). Fluid mechanics in the driven cavity.
Annual Review of Fluid Mechanics, 32, 93–136.

un, K.-H., Pyle, D. L., Fitt, A. D., Please, C. P., Baines, M., & Hall-
Taylor, N. (2004). Numerical study of 2D heat transfer in a scraped sur-
face heat exchanger. International Journal of Computers and Fluids, 33,
869–880.

un, K.-H., Pyle, D. L., Fitt, A. D., Please, C. P., Hall-Taylor, N., & Baines, M.
(submitted for publication). Numerical modelling of non-Newtonian heat
un, K.-H., Pyle, D. L., Hall-Taylor, N., Baines, M. J., & Fitt, A. D. (2006).
Velocity profiles and frictional pressure drop for shear thinning materials in
lid driven cavities with fully developed axial flow. Chemical Engineering
Science, 61, 4697–4706.


	Heat transfer in lid driven channels with power law fluids in a hydrodynamic fully developed flow field
	Introduction
	Differential equations and numerical procedure
	Governing equations
	Flow equations and boundary conditions
	Energy equation and thermal boundary conditions
	Local axial heat flux

	Numerical formulation and solution procedure
	Numerical convergence

	Results and discussion
	The effect of viscous dissipation on heat transfer for n=0.33 and 1.0
	The effect of specific heat, channel aspect ratio, characteristic viscosity and lid velocity on heat transfer

	Conclusions
	Acknowledgements
	References


