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ABSTRACT A siow flow model is proposed for the determination of the effective viscosity of a
sample of pitch and anthracite electrode material. The case of a tall, thin sample is considered
and a simple formula is derived for the viscosity The boundary layer structure at the edges of the
sample is also considered. Finally, numerical calculations are performed using a boundary clement
method

1. Continuous Electrode Smelting

The problem considered herein concerns the determination of the ‘effective viscosity’ of a
material used to make continuously consumed electrodes, whose function is to conduct large
amounts of electrical energy to the centre of a blast furnace for the production of various
kinds of alloy and steel. The material, traditionally known as ‘paste’, is composed of a mix-
ture of anthracite fines of widely differing sizes, held together by a pitch binder  The mixture
is solid at room temperature but begins to flow as the temperature is increased. Although
the mixture is clearly a multiphase fluid, and under some circumstances can exhibit segre-
gation, or phase separation (for details of a theoretical study examining this phenomencn
see BERGSTROM et al (1989)) there is much practical interest in determining its effective
viscosity by treaiing it as though it were a single phase mixture. By further assuming that
the paste behaves like a Newtonian (highly) viscous fluid, we acknowledge the fact that
although this is certainly a large oversimplification, an accurate comstitutive law for the
mixture would not be easy to propose because of the wide variation in size of the anthracite
fines, and sensitive dependence on temperature

For the purposes of this study we will assume that the temperature is fixed and consider
one of the many different tests used, known as the ‘velocity test.” Here a sample of the
paste is placed on a flat surface, and a moveable plate is placed on the top of the sample
The plate is moved vertically downwards with a preseribed velocity, squashing the sample,
and the effective viscosity is inferred from the ‘bulge’ exhibited by the lower portion of the
sample. {There are other tests including those involving prescribed loads which may be
treated similarly, but space does not permit their discussion here. ! )

Details of other tests may be found in FITT & AITCHISON {1991).
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2. A Slow Flow Model

To model the flow of the paste sample, we begin by non-dimensionalizing the Navier-Stokes
equations. In order to simplify the analysis presented here, we assume that the sample is
8 two-dimensional rectangle; normally in practice the sample is cylindrical, and such ge-
ometries can be dealt with in a exactly similar fashion to that deseribed here Taking unit
vectors ¢,7, and assuming that the sample has height k and semi-width I, we scale lengths
with h, velocities with a representative velocity Uy, time with h/U., and pressures and
stresses with plU.,/h. This gives the equations

Re
Relq; + (g V)q] = —-Vp + Vg - F—ia, Vg=0

Here the Reynclds and Froude numbers are defined respectively by Re = AU pfp, I'r =

U2 /gh With typical values of b ~ Im, Ue, ~ lm/fhr, p ~ 3gm/cm3 and g ~ 108 Pa sec,

we find that Re ~ Fr ~ 0{1073), leaving the slow flow equations with body force
Vp=Vig-aj, Vg=0

We impose standard no-slip boundary conditions on the bottom surface y = 0, stress-free
conditions and the usual kinematic constraint on the sample side z = £(y,¢) say, whilst on
the top surface we have u = 0, v = §(¢), corresponding to the imposed velocity of the ‘pusher
plate’ To attack the full problem posed here a numerical approach is required However,
there are some situations in which analytical results may be obtained.

3. A Tall, thin sample.

Suppose the sample is tall and thin so that L/h = ¢ € 1 Making the scalings 2 = X,
u = ¢l and £ = en, the equations of motion become

2
px = Uxx + Uy, Epy = vxx + vy — €, Ux +v, =0

These may easily be solved by setting I/ = Uy +¢l; +¢*Us+  and using similar expansions
for v,p and 5. Imposing symmetry conditions ¥ = vy = 0 on X = 0, the kinematic
boundary condition on the free surface, and considering the y-component of the stress-free
boundary condition on the free surface to order ¢2, we find that the solution is

X2
v = w0(,) 4 (1) + E[o(a — Buogy) + a(3,0)

X3
U=—-Xvgy—eXov, + 62[7vnyyy - Xqy]

where 1y and vy satisfy
7o + (UOUD)y =0, 4(’70v0y)y = afio

These equations admit two boundary conditions for vg and an initial condition for 7y Clearly
the correct cnes to impose are vy = O on y = 0 and vy = §(t) on y = s(¢); evidently the
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boundary conditions for u cannot be satisfied and there will be “inner’ regions near to the
top and bottom of the sample where a boundary layer analysis will be required to complete
the details of the solution. The two equations for 5y and vy are in general not easy to solve,
but for small times the viscosity may be estimated from the bulge in the following manner
Assuming that ng(y,0) = 1 and v = —Vr on y = 1 where Vp is non-dimensional velocity, we
find that

t
=14 g(svT — %oy + a) + O(1%)

2
It has already been noted that this solution is not valid near to y = 0 We shall assume
however that the maximum ‘bulge’ is occurs at the boundary layer edge, which corresponds
to the point y = 0 Re-dimensionalizing shows that if the top plate moves with velocity
Uy and the maximum semi-width of the sample is BL, then this is related to the effective
viscosity by

(ay(2ey® — 3ay + a — 24y Ve + 24V7)) + ot

N h2pgt
B =8B - 1) - Ust)

Unfortunately experimental results are vnobtainable, so the best which can be achieved is to
compare the theory with a numerical ‘experiment’. Figure (1) shows a comparison between
the theory and a numerical solution to the full problem which was calculated by a finite
element method in which the (p,u,v)-version of the Stokes equations was written in stress-
divergence form so that the Galerkin method gave the stress conditions as natural boundary
conditions The topology of the grid was maintained by the time-stepping of exterior and
interior nodes. The aspect ratio of the ‘experimental’ sample was 10-1 and the ‘experimental’
viscosity was 108 Pa Sec. Clearly for small times the theory gives a satisfactory estimate of
the viscosity

Some consideration of the boundary layers which exist near to the top and bottom of
the sample is necessary. Considering the hottom of the sample (the top may be ireated
similarly), it is clear that the additional scalings ¥ = €Y, v = €/ must be made This leads
to the equations

Pyx=Uxx+Uyy, pr=Vxx+Wy—ca, Ux+W =0

with boundary conditions U = V = 0 on ¥ = 0, stress-free conditions on X = 5{Y,%), and
symmetry on X = 0 There is also a matching condition which must be satisfied as ¥ — oo
For small times the matching condition is known from the solution given above, the free
boundary remains vertical to lowest order, and a stream function ¥ may be introduced which
satisfies the biharmonic equation. By setting ¥ = —KY X + @, where K = —{¥7 + «/8),
in order to retrieve a problem where & — 0 as ¥ — co, we are finally required to find
a function ®(X,Y) which is biharmonic on the semi-infinite strip {¥ > 0,X € [0,1]},
vanishes as ¥ — oo, and satisfles @ = xx =0at X =0, & =0, @y = KX at ¥ = 0 and
Syy — ®xyx = ¥xxx + 3%yyx = 0 at X = 1. This may be accomplished fairly easily by
writing & as a Papkovitch-Fadle eigenfunction expansion (for fuller details see, for example
SPENCE (1978)) in the form

e(X.Y) = z cn¢n(X)e_AnY

n
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" t B{num) | B{modecl} | s(t} pfexpt)

000 | 100600 1.oooo | 1.00 ] 1.000 x 10%
002 [ 1.6231 1.0226 | 0.98 | 53535 = 108

004 [ 16470 1.0453 | 0.96 | 7.560 x iG®

0.06 | 1.0720 1.067¢ | 094 | 6615 x 108
0.08 | 10079 L0906 {0.92 15913 x 108
0.10 | 1.124% L1132 [090 | 5313 x 107
| 12| L1531 1.1359 §0.85 | 4.796 » 10®
014 | 11826 | 1.1585 [ 0.86 | 4.345 x 10°
016 | 1.2134 11812 | 0.84 | 3.964 x 103
0.18 | L2456 1.2038 | 0.82 [ 3.630 x 10%

0.20 1.2793 1.226G5 0.80 | 3.337 = 108

A A 1

~

0.025 0.05 0.073 0.1 0.129

Figure 1 : Sample shape, numerical calculations and
comparison with theory
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where

1
¢nfX) = (A kY ) {X cos A, cos Ay X + sin A, sin A X)
n n

(the scaling factor has been included for convenience) and the Papkovitch-Fadle cigenvalues
are members of the doubly-infinite family complex solutions to

A+sinAcosA =0

with real part greater than zero. The relevant eigenvalues may easily he computed using the
Newton-Raphson method, for example, and to complete the details of the boundary layer
structure it remains only to show that the eigenfunction cocfficients cn may be determined
to satisfy the boundary conditions

0= Ecn¢n(X), KX = Z—Ancn?sn(x)‘

Ostensibly the task of finding complex numbers ¢, to satisfy the above conditions is easy;
matters are complicated however by the fact that the sigenfunctions are not mutually or-
thogenal, In some circumstances this defect may be remedied by constructing so-called
biorthogonal functions. To be specific, suppose we define

£ = (X)), f2(X), F3(X), f4(X D) = (@xv,9xx,Q, P) =0

where P = V2@ and Q is the harmonic conjugate of P, If we now use the eigenfunction
expansion to define functions ¢np(k = 1,4) via the expression

FulX) = D endur(X),
"
Then it is possible to find ‘biorthogonal’ functions By (X) and fr3(X) so that

1
‘[0 .Bml $nt + .Bm3¢n3dx = émn,

so that the coefficients ¢, may be calculated directly by quadrature. The same procedure
is possible for the functions fup and ¢nq, so that when the problem is such that either the
f1 and S5 or the pair fp and f4 are prescribed as data, calenlation of the coefficients is easy
Unfortunately only these two data prescriptions may be dealt with in this way - for other
‘non canoniczl’ problems such biorthogonal functions do not exist. Since in our case the
data prescribed was & and ®,, which amounts to f; and fz, ihe problem is of non.canonical
type.

One obvious method caleulating the ¢y is by collocation, which gives rise to an infinite
set of linear equations. It is then possible to proceed by solving a truncated {say N x N) sys-
tem of equations to approximate the ¢, During this procedure, great care must be taken to
ensure that a diagonally dominant matrix is produced, thereby ensuring that as N — oo the
solutions to the truncated system converge to the solutions of the infinite system This may
however be accomplished by using the ‘optimal weighting functions’ introduced by SPENCE
{(1978), so completing the determination of the boundary layer structure
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4. Conclusions

A model has been presented which allows the effective viscosity of materials whose flow
is governed by the slow flow equations to be determined. In the case of a tall, thin sam-
ple simple estimates for the viscosity may be found which give acceptable agreement with
numerical calculations for the full problem performed using the boundary integral method.
The boundary layer structure at the top and bottom of the sample leads to a non-canonical
biharmonic preblem which is of some interest in itself For the problem with more general
geometries however, numerical methods must be used.
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