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THE STRETCHING OF A SLENDER, AXISYMMETRIC,
VISCOUS INCLUSION-PART II: NUMERICAL
SOLUTION AND RESULTS*

‘A. D. FITTf AND P. WILMOTT#

Abstract. In Part I [SIAM J. Appl. Math., 49 (1989), pp. 1608-1616] of this paper, the stretching of a
thin, axisymmetric, viscous inclusion was examined via the method of matched asymptotic expansions,
resulting in a coupled system consisting of a nonlinear integrodifferential equation and a first-order
conservation law. Now the numerical solution of this problem is considered, that relies on the approximation
of the unknown functions in the integrodifferential equation in terms of the products of cubic splines coupled
to a timestepping solution of the conservation law. Some results are given and comparisons made with the
known exact solutions. Consideration is also given to cases where no exact solution is available.
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1. Introduction. In Part I of this paper [7] the analysis of the stretching of a thin,
axisymmetric, viscous inclusion was examined. Part II of the paper considers the
numerical solution of the resulting coupled system of a nonlinear integrodifferential
equation and a first-order conservation law, giving a selection of results. There is not
an extensive literature on the type of integrodiferential equation that arises in the
problem. Spence and Sharp [6] used Chebyshev polynomials to solve a similar equation
resulting from the study of an elastohydrodynamic cavity flow in two dimensions, but
the nature of the kernel of the present equation makes this choice of basis functions
inappropriate. We have chosen to employ cubic splines for reasons that will become
apparent below, and some attention has been given to methods such as this in [2]. In
[1] Baker considers some closely related integral equations but gives no methods that
are directly applicable to our case. The numerical solution of a number of different
types of singular nonlinear integrodifferential equations has been discussed previously
in [4] and [5] for problems arising from the study of separated flow. Although in some
ways the equations bear a superficial resemblance to the present problem and the basic
numerical strategy is the same, the problems are totally different in practice.

The interested reader is referred to Part I [7] for a full description of the problem.
Briefly, we assume that a highly viscous fluid of viscosity u contains a slender,
axisymmetric inclusion of viscosity n. Defining the viscosity ratio as § = u/n and the
initial halflength of the inclusion as L, we assume that the unperturbed external flow
is of pure shear (stagnation point) type and has velocity components

yr
2
where the x-axis is aligned with the axis of the inclusion. If we define the slenderness
parameter ¢ in terms of the volume V of the inclusion (that of course remains constant
throughout the flow due to the incompressibility of the viscous fluid) by
47e’l’?
3 b

u=yx, v=

V=
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1618 A. D. FITT AND P. WILMOTT

then it is possible to show that for a fixed ratio & the regime of interest where the two
fluids interact with each other corresponds to & = O(e?). To make this precise, we
define the parameter A, of order unity, by

8 =Ag’

and the flow problem may then be solved using the method of matched asymptotic
expansions (Part I, [7]).

It is worth mentioning at this point that some of the numerical interest in the
problem stems from the fact that the relevant integral, while not of singular type, is
coupled to an essentially nonlinear conservation law evolution equation and so some
care is needed in combining the timestepping procedure for the differential equation
and the solution procedure for the integral equation.

2. Equations of motion. The method of matched asymptotic expansions applied
to the problem as described in Part I leaves us with the following partial differential
and integrodifferential equations to solve

(1) At+(Au)x=0,
(1) _
x”J W"S”B("’ 1)(=1+log [4(l,~x)(h +x)])
=1Ii(1) -
(2) i
=u+2B(x,t)log <-Aﬂi>

where A(x, t) is the cross-sectional area of the viscous inclusion (that has been scaled
with €?), —1,(¢) and L(t) are the positions of the inclusion ends, u(x, t) is the velocity
of the inclusion, ¢ has already been defined in the previous section, and

3
B =8—7T)"(Aux)x-

For simplicity, assume that the inclusion is symmetrical, so that /,(t) = L,(:) = I(t) and

the halflength /(0) initially is unity. The assumption of symmetry is made at this stage

only on the grounds of convenience: all of the coefficients that will be set up for the

numerical solution of the problem will be for the more general asymmetrical case.
Under these assumptions (2) is modified to read

0} _ 2 2.2
3) ZJ M—Mds+2ﬁ(x, t)(—l—log<€—>+log [l Ax ]>+x—u=0.

—I(1) |S—x| 47

The boundary conditions are that the cross-sectional area of the inclusion must be
zero at the inclusion tips and that the velocities at the tips of the inclusions must be
equal to the time derivatives of the inclusion length so that

(4) A=0 at x==zxI(1),
(5) u==x1 atx==I(1).
There exist exact solutions to (1) and (2). These are given in full in Part I [7].

3. Numerical solution procedure. Before embarking on the numerical solution of
the problem, it is convenient to make the following transformations to the equations
of motion. We rescale the interval to fix the finite-difference mesh by setting

x=1(t)z, A(x,t)=P(t)a(z1)
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and also put

A
B= 8—:— B, s=I(t)p in the integral.

We then have

. _ _ 2
© | B_(nlt;——fl(z’qd’”r”(z”)[c“°g<l az)];%“z_"):o’

(Pa),+[Pua -zil?a], =0,
7 B=[au,],,
a(x1)=0, u(xl)==I(1)

where

82
1(0)=1, C=-1-log (—)
47
In brief, the numerical strategy will be as follows. The integrodifferential equation will
be solved at time ¢ by collocation to provide an updated approximation for u, assuming
a “known” scaled cross-sectional area a(x, t). The new positions of the ends of the
inclusion may then be calculated via the formula

(8) I(t+dt)=1(t)+u(1,t) dt

where dt denotes the time steplength. We then solve the conservation law using an
(s+p+1)-step finite difference method of the form

9) ai'=Q(ap_s, Qk—gr1," "5 Aksp)

allowing the numerical method to continue. Before giving details of the method, it is
worth making the following points:

(a) The main work in the method consists of solving the integrodifferential
equation in (6).

(b) The new position of the inclusion boundaries I(¢+ dt) has been calculated
via an explicit formula. It would be possible to make this implicit but the use of terms
such as u(1, ¢t +dt) would make the method computationally awkward.

(c) The finite difference method (9) is by definition explicit, and a CFL-type
condition involving dt/dx will no doubt have to be satisfied to ensure stability. If
required, (9) could be made implicit without greatly increasing the complexity of the
scheme.

(d) Equation (1) that we have solved using the finite difference method (9) is of
conservation law type and therefore the development of discontinuous solutions is not
out of the question. For the single conservation law

(10) u +[f(w)]=0

this will happen in genetal if f"(u) <0, and physical considerations show that this is
unlikely if the inclusion is expanding. We therefore exclude this possibility for the
moment.

(e) The question also arises as to the best variables for solving the integrodifferen-
tial equation (3). The function B(x, t) appears only in a linear manner, and the absence
of any derivatives of 8 makes it somewhat appealing to solve for 8 and determine
u(x, t) from this. Splines could be used to approximate 8 or even merely piecewise
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linear functions. There is a problem with the determination of u associated with this,
however. We have

Au, = Jx B(s, t) ds
-

(since A=0 at x =—1I; a subsidiary result from this is that the integral of 8 over the
whole of the inclusion must be zero). This means that we can write u(x, t) as

x 1 A
(11) u(x, t)=L AL D) J_IB(S, t) dsdA

but the determination of ¢ is obvious only in the symmetrical case when u(0, t)=0

"~ and so £=0. Furthermore, to be able to calculate the integral (11) numerically, we

would in general require knowledge of du/dx at x ==l as this is not zero at the
inclusion tips. Therefore we decide to approximate u(x, t) and a(x, t) instead.

In view of these comments, to solve the integral equation we assume that we know
a(x, t) at a given time and further can approximate a(x, t) as a cubic spline T, on the
interval z, =x=z.,,(k=—N+1,: -, N—-2) and a quadratic when z_y=z=z_n4;
or zy_, =z = z. Also, to simplify the computations as much as possible we use a grid
of constant spacing dx= h and write a, = a(z,), etc.

To approximate u, we define u as a cubic spline when z_y.,=z=zy_;, and a
quadratic when z_y =z=2z_n4, Or zy_, = z = zy. Again the drop in order at the ends
comes about because we do not know the derivatives of u at the inclusion boundaries.
This means that

( )_{Sk(x) (xE[Zk, zk+1]a _N+1§k<N_1)a
PUTILx)  (x€lzir zen], k=—N or N—1),

( )_{Tk(x) (xE[Zk,Zk+1],_N+1§K<N_l),
IZNVex) (x€lzi zenl, k=—N or N—1)

where
1 3 3
Se(x)= oh [Mi(Zks1 = %)+ My (x — zi)
+ (Zirr — X) (6w — > My ) + (x — 2,) (61 — B> Mi1) ],
1
Ti(x) =a [Ni(zks1 = %)* + Niy (x — 2)°

+ (21 — %) (6a — B> Ni) + (x — ) (6 a1 — B> Niwn) 1,

u—N+1_u—N_M—N+1

h 2

L—N(x)=(x_z—N+l)[ (Z—N+Z—N+l)]

M_n+
+_2"" (XZ_ 22—N+1)+ U_N+15

UN —UN—1 My_,
h 2

My _
(zn+ ZN—])] +—2= (xz_ Z%\l—l)-‘_ UNn-1,

LN—I(x)=(x_zN—l)[ 2
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A_N+178-N N_n+1 (

h 2

V—N(x)=(x_z—N+l)[ Z—N+Z—N+1)]

N—N+l(

2

2 2
+ X" =zZn4)ta N,

an —an-1 Nn_1
h 2

and u, = u(z,), a, = a(z,) with standard spline equations

Ny_
(ZN+ZN—1)] + ! (xz_zil—l)-*-aN—la

VN—l(x)=(x_ZN—l)[ 5

6
5M—N+1+M—N+2=?[“—N+2_2u—N+l+u—N]a
6
(12) MN-—2+5MN—1=ﬁ[“N—2_2uN—l+uN]a
6
M, _+4M+ M, , =?[uk—l_2uk+uk+l] (k==N+2,---,N=2),
6
5N—N+l+N—N+2=?[a—N+2_2a—N+l+a—N]a
6
(13) NN—2+5NN—1=?[aN—2_2aN—l+aN]a

6
Nk—1+4Nk+Nk+1 =?[ak_1—2ak+ak+l] (k= —N+2, crey, N—Z).

Having given the details of the splines that we are using, we now note that actually a
more convenient way of expressing them is by setting

u(x)=S8i(x),  a(x)=Tx)

for xe[z, zx+1] (k=—N,-+-, N—1) and defining M_y and My so that M_p =
M_y 1 and My _, = M, with similar conventions for N_, and Ny. It is easily shown
that this gives the same formulae for the splines as before, and in fact this corresponds
to specifying that the curvature at the endpoints of the inclusion is the same as the
curvature at the penultimate points. Clearly with a large enough grid this should cause

no problems. If we assume now that the values of the 2N +1 constants u_n, * * *, Uy
are “known,” then we have 2+1+2(N —-2)+2=2N+1 equations for the 2N +1
parameters M_y, - - -, M. The integral equation must therefore provide us with2N +1
equations for the values u_y, - - -, uy. This is ensured by collocation carried out in
the following manner. Collocating at the points z;, (L=—N, - -, N) we let
Ik_L=J “ B(p, )= Bz, 1) |
2z lp - ZLI

and approximate the integral equation in (6) by

N-1 _ 2
Y IL+B(z,1t)| C+log (—1 ZL) +4—@[1zL—u(zL)]=o
k=—N a(z,_) 3
(14)

(L=_N,.. .aN)'

The integrals I, ; are in principle easy but in practice awkward to calculate (a symbolic
algebra package such as MAPLE is the easiest way to perform them) and details are
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given in Appendix (i), but having calculated them we can now set up the required
linear equations. First of all, we let q represent the (4N +2)x 1 vector

q=(u_n, M_n, u_ny1, M_ni1, """, Unoy, Moy, un, MN)T~
We wish to write (12) and (14) as
Eq=b

and we note immediately that there is no point in trying to achieve banding of the
matrix E as most of the entries will be nonzero. To be more specific, we write

g}

where E, covers (12) and E, covers (14), and a similar convention is adopted for the
components b, and b, of the right-hand side b. The (2N +1) x (4N +2) matrix E, is
banded with a bandwidth of six while the (2N +1) X1 vector b, =0, however, the
structure of the (2N +1) x (4N +2) matrix E, is more complicated. For simplicity it
is convenient to split E, into three parts so that

E,=EMP+EP+E®.

Taking these one by one, ES" is defined as the part of the matrix that is NOT due to
the integral terms I, ,. Writing (14) in order from L=-N to N, we find that the
structure of this part of the matrix is given by

ESQn+21=—6K_nH_n—4m)\/3,
E(ZHN+2,2) =H_N[-2h°K_n+a_N],
E(Zt;N+2,3)=6K—NH—Na
E(z&wz,a) =—h’K_yH_y,
E(Z})K‘ZK—4N—3) =—6Kg_3n_2—4mA/3,
E(Z})K,ZK—IlN—Z) = Hy_3n—2[=2h° Kk _sn-2F ak_3n-2),
(K=2N+3,---,4N+1),
E(2:)1<,2K—4N—1) =6Kk_3n-2Hk-3n-2,
E(Z:)K,ZK—4N) =—h’Kg_3n—2Hk_3n-2,
E(Z};N+2‘4N—l) =-6KyHy,
E(2}4)1N+2,4N) = thNHNa
ESlin+2.4n+1)=6KnNHy —4mA /3,
E(2:£N+2,4N+2) = HN[ZhZKN +ay]

where
1
K, = W [—2h2N,_ —6a;,+6a,,,— thz_+1],
l .
Ky = 36h2[2h2NN —6an_,+6ay+h Ny_i]
and

1-z3
HL=C+log<a(z ;‘)
L
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At the endpoints, we evaluate this logarithmic term using a linear approximation for
a, so that, for example,

2h
Hy =C+l'og<a )
N-1

Now we consider the contributions from the I, ; terms. Using Appendix (i), each term
in the integral has a “K” component involving M,.,, M,, u,, and u,,,, and also an
“L” component involving M,, M, ,,, M,_,, u,, u, ., and u, _,. We define E5? to be
the part of the (2N +1)x (4N +2) submatrix E, that involves the “K” component,
and E% the part that involves the “L” component. After some further computations,
we find that EY” is given for K =2N+2,--- ,4N+2 by

(2) — 1)
EZ(K,21+2) = VAI—N,K—3N—2a

1=0,---,2N-1,

2 _ (3)
Eg()l(,ZI-H) = VAI—N,K—3N—2,
{—l if K-IzZ2N+3,
v= .
1 otherwise,
(2) — Q) (2)
E3k21+2= Ex(k21+2 T VATIN_1,k-3N-2,
2 — 2 (4)
EZ()K,21+1) = E(z()1<,21+1)+ VAYIN_1,k-3N-2,
{—l if K—-I=Z2N+2,
v= .
1 otherwise

(see Appendix (i) for the definition of the As) and it only remains to determine E%>.
Using the fact that some of the logarithmic sums telescope, we find eventually that we
may write the submatrix ES» as

E¥ N2, =A% log 2N),
En+22=ACN log 2N),
E@ N2z =A% log 2N),
E) N2 =A% log (2N),
ESx 2k —an—3 =A% sn_2log (K —2N —2)(4N +2-K))
ES% 2k —an-2=A% sn_2l0g (K—2N -2)(4N+2-K))
E®ak—an-1, =A% sn_slog (K —2N-2)4N+2—K))
ESRok—any=A® 3y 2log (K —2N —2)(4N+2-K))
ESin+2an-1y=AR log (2N),
ESin+24n) =A% log (2N),
Ein+2an+1y =A% log (2N),
ESin+2an+2 =A% log 2N)

where the bar denotes that A{”y is the same as A{”y, but with the log term set to
unity. It now remains only to determine the right-hand side vector b,. This is composed
only of the nonhomogeneous term of (14), so that

_al(1)mA
T3

(K=2N+3,--- 4N +1),

T
(—z-Ns —Z_N+15" "5 —ZN-1> —2N)

b,
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and the simultaneous linear equation formulation of (12) and (14) is complete. The
final structure of the matrix E is such that the bottom half of the matrix is full and
the top half of the matrix is banded of bandwidth six. This confirms our earlier statement
that there is no point in trying to use sparse solvers, and accordingly the NAG routine
FO4ATF was used for the solution of the equations, while the much quicker FO4FAF
was used to solve the equations for the spline coefficients of a.

For the timestepping procedure to solve the consérvation law, the Lax-Friedrichs
method was used. The equation

(Pa),+[Pua—zil’al,=0
was written
wtf(w)=0 (w="Pa)

and discretized as
l n n dt n n
W?H =§ [wia+wi,]- (2dx>[fi+1 -fisal

The relevant Courant number may be estimated by writing the conservation law as
so that

and assuming that u is “known” we find that the Courant number 4, that must be
less than unity for stability, is given by

u—zI\ dt
€= —|.
zgtl—al).(u [( 1 ) dx]

As usual in the solution of such equations, it is desirable to keep the Courant number
. as close to unity as possible for an accurate solution, but it is interesting to note that
in the case of the exact solution (see Part I [7]) the Courant number is always identically
zero. This of course is a consequence of the fact that the exact solution is a true
similarity solution, so that with a suitable choice of new independent coordinates the
evolution is only in one variable.

For the numerical results described below, the coding was carried out in FOR-
TRAN 77 and a DIGITAL VAX 8700 was used for the calculations.

4. The asymmetrical case. Before giving a selection of numerical results that were
calculated using the method described above, it is worth making a brief comment on
the asymmetrical case. The relevant equation is (2) and once again it is possible to
simplify this and fix the mesh by setting

x=3{(L—h)+(L,+h)z],

2
A= (m) a(z, t),

2
s=3(L—-L)+(L+1h)p] in the integral,
and

3
B(z, 1) =g (Auy)s.
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Equation (2) is then transformed to

J M—B-(—z-'!ld +B(z t)[C+log(1_z :'
-1 lp—z

2
4TM< [(l— 1)+(ll+lz)z]—u>=0 (C=—l—10g( 77))

and the corresponding boundary conditions are
A=0 atz==l1,
u(=1,0==0(1),  u(1,1)=10).

The conservation law becomes

[I*a],+ [l*zau - l*zaw] =0

where
L+

*=
! 2

and we may define the Courant number € in the obvious way by

(g_ max [(2u_z(il+iz)_i2+il)ﬁ]
-l 20* dx]

The changes required to be able to treat the asymmetrical problem are therefore
minimal and amount to no more than a change in the right-hand sides of the linear
equations and the need to keep track of two lengths and their derivatives in the
timestepping procedure.

5. Numerical results. The first test of the numerical scheme consisted of reproduc-
ing the known exact solution for the case where the initial shape of the inclusion was
spheroidal. Figure 1(a) shows the cross-sectional area A(x, t) at time ¢ =4, for the case
£ =0.1. Here and henceforth A will have the value unity. Figure 1(b) shows the logarithm
of the inclusion halflength /() as a function of time. Here calculations were made

X1972
43 Alz,t)

x

L A
FiG. 1(a). Comparison between exact (line and symbol) and computed (solid line) cross-sectional areas
at time t =4 for an initially spheroidal inclusion with ¢ =0.1, A = 1.
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X171

22_
log 1(t) g ]
18]
16]
14]
12]

104

e T T TT T T T T T T \anaanal t
0 S 10 1S 28 25 30 35 48 45
X171

F1G. 1(b). Comparison between exact (line and symbol) and computed (solid line) inclusion half-lengths
at time t =4 for an initially spheroidal inclusion with e =0.1, A = 1.

with 50 meshpoints in each half of the inclusion and a timestep of 0.05. The exact
solution is denoted by the line and symbol, while the computed results aré shown as
a full line. At time t =4 (after 80 timesteps) the ratio of the inclusion volume to the
original volume has fallen by four percent. A result of this is that mass is being lost
from the ends and gained at the center. Agreement is clearly good, indicating that the
numerical method is working well.

Next we considered a case where the initial shape of the inclusion had a neck at
x =0, but was symmetrically placed about the origin. The characteristic ‘“shouldered”
shape was given by

(119 3577) . (3577 131) 5 ]
= — - = +| ——— +
A(x,0)=(1—-x )[( 3 2 x 2 s x“+2

and the slenderness parameter ¢ was chosen to be 0.1. Fifty meshpoints were used in
each half of the inclusion and the Courant number was fixed at 0.5. The results are
shown in Figs. 2(a) (times =0, 2, and 4) and 2(b). It should be noted that initially

x1p"!
20, Alx,t)

B SEEE e P &

=778 15 14 13 2 e 123 4 5 8 7
FIG. 2(a). Cross-sectional areas at times t =0, 2, and 4 for inclusions with initial “shouldered™ profile
(e=0.1,A=1).
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1971
iut) Xese_

50
55:
50
45:
40
35!
30:
25
20
15]
10:
5]
X

%] 5 10 15 20 25 30 35 40 45

X107
FiG. 2(b). Inclusion half-length for inclusion with initial *‘shouldered” profile (¢ =0.1, A =1).

the ratio of the cross-sectional areas at the peak and trough is 1.5, while later this ratio
increases; for example at t =4, where two percent of the volume has been lost, it has
risen to approximately seven. This leads to a more rapid thinning at the center of the
inclusion so that at later times the shape resembles a “dumbbell.”” This dumbbell shape
is maintained for large times in the form of the limiting similarity solution described
-in Part I [7]. This result is reminiscent of glass-drawing (see [3]).

As an example of an asymmetrical problem, we took the initial cross-sectional
area as

(15) A(x,0)=7(1-x)(x+1),

choosing £ =0.1 and utilizing 75 meshpoints in each half of the inclusion with a
Courant number of 0.5. The endpoints were chosen as x = +1 so that the inclusion
was symmetrically placed about the origin. Results for the cross-sectional area A(x, t)
at various times and the inclusion lengths /,(t) and ,(¢) are shown in Figs. 3(a) (times
t=0, 1.5, and 3.0) and 3(b). At time ¢ =3 the loss in volume is 12 percent. The bulk

X197~
40, Alzx,t)

351 t=0

30

LASEARRARR T T T 12

“14 -12 S1e -8 <8 a2 o2 4 8
F1G. 3(a). Cross-sectional areas at times t =0, 1.5, and 3 for inclusion with initial asymmetrical profile
(e=0.1, A =1).
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i(t)

-104
-12]

1.(¢)
-141 1
F1G. 3(b). Inclusion half-length for inclusion with initial asymmetrical profile (¢ =0.1, A =1).

of the inclusion moves off to the right, but the velocity of the left-hand endpoint is
much greater than that of the right.

To verify some of the results that have been obtained at the end of Part I, the
above asymmetrical example was run first with a much smaller value of & (1.0x107%)
and with the inclusion symmetrically placed, and again for the same value of ¢ but
with the ends at x =0 and x =2. In both cases, 100 meshpoints were used for each
half of the inclusion and the Courant number was 0.9. The results are shown in Figs.
4(a) and 4(b), and 5(a) and 5(b), respectively. In the former case, the inclusion does
not move substantially until time ¢ =2, when it begins to move rapidly to the left and
tends to the similarity solution. This is the expected result. At ¢=2 it has lost six
percent of its volume. For small times, the right-hand end moves slightly to the right
before changing direction and progressing to the left. This behavior occurs for
sufficiently small values of & for the same initial shape when the inclusion begins
symmetrically placed. It is also worth noting that although the values of I,(t) increase
rapidly after time ¢ = 2, for much of the left-hand end of the inclusion the cross-sectional
area is negligible. In the latter case the behavior is quite different as the inclusion is
initially placed with all of its volume to the right of the origin. Now the inclusion
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F1G. 4(a). Cross-sectional areas at times t=0, 1, 2, and 3 for inclusion with initial asymmetrical profile
with endpoints symmetrically placed about the origin (e =1x107%, A =1).
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FIG. 4(b). Inclusion half-length for inclusion with initial asymmetrical profile with endpoints symmetrically

placed about the origin (e =1x1078, A =1).
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F1G. 5(a). Cross-sectional areas at times t=0, 1, 2, and 3 for inclusion with initial asymmetrical profile

and endpoints asymmetrically placed about the origin (e =1x 1078, A =1).
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F1G. 5(b). Inclusion half-length for inclusion with initial asymmetrical profile and endpoints asymmetrically

placed about the origin (¢ =1x107%, A =1).
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FI1G. 6(a). Cross-sectional areas at times t =0, 1, 2, 3, and 4 for inclusion with initial asymmetrical profile,
flow reversed (e =0.1, A =1).
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FiG. 6(b). Inclusion half-length for inclusion with initial asymmetrical profile, flow reversed (¢ =0.1, A =1).

moves off to the right immediately with much greater speed and takes the form of the
‘similarity solution, again as predicted by the theory. By time ¢ =2 it has lost five percent
of its volume. Again we note that to the left of the inclusion at later times there is a
considerable “tail”” with negligible cross-sectional area.

The final example considered corresponded to a reversed outer flow, so that in
(2) the leftmost term x on the left-hand side is simply replaced by —x. We again used
_ the initial profile (15) with £ =0.1 and performed calculations with 100 meshpoints in
each half of the inclusion and a Courant number of 0.9. The results are shown in Figs.
6(a) and 6(b) and indicate that the inclusion is being compressed while losing its
asymmetry. Because the total length of the inclusion in this problem decreases, there
is little loss in volume, barely one percent having been lost at time t =4.

6. Conclusions and discussion. A numerical method has been proposed for the
solution of an integrodifferential equation coupled with a conservation law. The method
appears to agree well with known theory and allows accurate computations to be made
of the motion of a viscous inclusion. Conclusions from limiting cases of the theory
have also been confirmed and the numerical method has proved to be robust.
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Appendix (i). To determine the entries in the matrix E, which is required to solve
the integrodifferential equation, there are a number of basic cases we must consider
for the integral

I —J B(p,t)—B(z., 1)
k,L —
Zy |p_ZLI

For —N=k= N —1 these are (i) L<k, (ii) L>k+1, (iii) L=k, and (iv) L=k+1.
For convenience we write (taking case (i) first)

dp.

1
a(x) = T,(x) =6_h (Ne(zg1— 2+ ZL_X)3+ Nia(x—z + ZL_Zk)3

+(zk1 — 2L+ 2. — x)(6a, — thk)
+(x—zp+ 2z, — z)(6ak — thk+1)),

1
u(x) =Sk (x) =a (M (2k 44 _ZL+ZL_X)3+Mk+1(x_ZL+ ZL_Zk)3

+ (Zear — 2o+ 20 — x)(6u — h° M)
+(x—z+ 2z, — 2)(6Up s, — WM y))
for x €[z, zi+1] and we find that
a=Ai(x—z )+ Bi(x—z.)*+ Ci(x —2) + Dy,
u=Ai(x—z.) + Bi(x —2)*+ Ci(x —z.)+ Dy,

where

a 1 a 1
Ak = a (N1~ Ni), By, =E [ Ni(zks1—z) + Niw(ze— 2],
1
Cic =6_h [3Nii(z— zk)2_3Nk(Zk+l - ZL)2+6(ak+1 —a)+ hz(Nk = Nl

1
kL “6h [ Ni(zie1 = 2)° + Niewa (20— 2)°

+(Zx+1— z)(6ak — thk) +(zp — z) (6@ — thk+l)]

and the A}’s, Bj,’s etc. are defined in the same way but with M replacing N and u
replacing a. We may now compute

B =(au,), = a;u, + au,,

- and we find that for x €[z, zx+1]

B(x)=E(x—z.)*+ Fy(x—z,.)*+ Gip(x — 2>+ He (x — 2) + Jiy.
where
E,=15A: A}, F,, =12A;B;, +8A;Bj,,
G =6Bi By +9C i A +3Ci AL,
Hi =4Bi Ci +6ADi+2B5, Ciy,
Jio = CiCi+2D5, By
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Now for L <k, we have

Iy = J BBz,
X— ZL

Zk

and so from a simple integration, we find that

E F, G +
IkL="‘k¢4+ kL¢ —t —— ¢+ hH +[J, — B(z,)] 10g<2k L )
4 3 Zk—zL
=Qu say

where
¢p= (21— 2)" = (2 - z)".
Also for L> k+1 we find that
L =-Qu

as the modulus term simply contributes a factor of —1. Naturally in the cases L=k,
k+1 we must check that there is no singularity. For L =k, we have

B(z))=J, = JkL|k=L

so there are no problems. For L=k+1 we have

B(z.)= JeL
and so we must show that

JL,L = JL—l,L-
This however is easily checked from the definitions. The only remaining singular case
to check is when k= N+1, L= N as we use a different form for B here. We have

B(z.)= Inoin = JkL|L=N,k=N—1

and so the singularity is duly removed here also. (We have ensured the continuity of
u,, by employing cubic splines for u.) We therefore find that

QkL’ L=_N9_N+l>""k_19

_QkL> L=k+2,“’9N_19M
L= % _

QkL’ L_k>

-Q¥, L=k+1
where Q%. = (Q,. with the log term omitted). Noting that from the definitions we have
B(z)= ( 1 ) [=2h*N_—h*Np11 +6(ar.1 —ay)]
: [_2h2ML_h2ML+1+6(uL+1_uL)]+aLML (L<N),
B(zN)—( 1 ) [2h*Ny +h>*Ny_+6(—an.1)]

“[2R*My + B> My_, +6(uny —un_y)] (L= N).
It is a simple but lengthy job to show that
Qu =AM AAGZM L+ AR + ADu  +ADM,
FAIMeo+AQu A AQu  FAQu,  +ALOM,
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(r= L-k Y =log (_r_:_l_))’
r
53

D = h2N,| —==+— (106—105r+ 2+[ L (r=2)(6-10r— Z]Y]
Al hNk[ 144 72(1 6—105r+30r°) 12(r 2)(6—10r—5r%)

where

25
+h Nkﬂl:_m_i( 20-33r+30r%)

1 9 3r (4 3r?
+|=—-= (- +5r7 + =+ --3r+—
[18 12 (r—=1)(-4-3r+5r )] ] ak[ 275 <3 3r 3 )Y]

5 3r 1 3r?
+ St —z+2r )Y
“““[4 2 (3 r 2) ]
7

AR =h? Nk[—&—im 57r+30r7)

1 2 2 1 2
———(r— + + —+— +
+[18 12(r 1)(=2—=Tr+5r )] ] hNk+,[ T 72( 14+15r+30r%)

1 7 ) 1 3r (1 3r) ]
+ + ta|>—=+|c+r-=
[36 12(4 5’)]] “"[4 AT A

3 r 1 r a—a 1 r? 1 7
Agj:Nk(—z+§>+Nk+1(—z—5)+Y[%+Nk(§—r+2>+Nk+1(6 E)],
AR =-AR2,
r2 2
h h 1 4
=Y| =N+~ Neg—Zan+3 ] (L<N),
) _ | 9 18 3 3
AkL_ r'hz 1
-Y 5 Nn - 3 N~ 1+ NN ) (L=N),
[ h? h? 1 1 ]
1-Y|—N_+— N, +-= L<N),
Af:’L)= 13 LT3 VL 6aL+1 6 ( )
0 (L= N),
[1 1 1
=Y '3'NL+8NL+1_P(aL+1_aL):| (L<N),
A=y
1 1 1
=Y ENN hzaN 1+6NN 1] (L=N),
A(S) _{ AU) (L< N),
“ o (L=N),
A(g)_{o (L<N),
Al (L=N),
0 (L<N),
AL = h? 1 h?
R 18 Vv g @t Na (L=N).
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