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Abstract. The problem of coating steel by passing it through a molten alloy and
then stripping off excess coating using an air jet is considered. The work revisits
the analysis of Tuck [1] with the addition of extra shear terms and a consideration
of the effect of increased air-jet speeds. A first-order partial differential equation is
derived and solved both to obtain the steady-state coating shape and to determine
the evolution of any defects that may form.

Keywords: Jet-stripping, viscous flows, coating flows

1. Introduction

During the production of steel strips, it is usual to coat the steel surface
with a layer of metallic alloy (e.g. zinc/aluminium) for protection from
corrosion. One way in which this can be achieved is to use the “con-
tinuous hot-dipped galvanising process” during which the steel strip
is passed through a bath of the molten metal coating. After passing
through the bath the coated steel strip is pulled upward and the alloy
coating cools and solidifies. (The uncoated steel surface is protected
from corrosion prior to entering the bath.)

A pair of air knives lie on either side of the ascending steel strip.
These control the thickness of the metal coating. Each air knife fires a
high velocity air stream along a horizontal line across the rising strip.
This forces some of the molten metal to return downwards into the
bath, leaving the coating at the desired thickness.

Tuck and other authors [1, 2, 3, 4] built on the work of Thornton and
Graff [5] to develop a model for this process that assumed the coating
was thin and the flow was almost-uni-directional. The air jet was mod-
elled as a surface pressure distribution. The resulting first-order partial
differential equation was analysed in some depth and it was shown that

c© 2010 Kluwer Academic Publishers. Printed in the Netherlands.
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the coating thickness was dominated by a control point that coincided
with the minimum of the maximum upward flux of the coating material.
This calculation turned out to be rather delicate and in the actual
production process an iterative scheme is used. Tuck [1] also showed
that small perturbations in the surface shape were marginally stable.
Subsequent work has shown that the air shear due to the air knife
is important, as can be verified by a dimensional analysis. This extra
term in the equation makes the problem more complicated, but does
not change the essential features.

During recent developments in the production process, problems
have arisen with the quality of surface coatings. These have involved
some new advanced alloy coatings. With fixed processing conditions
(speed of the strip, alloy used, etc.), there is an associated air knife
pressure below which satisfactory coating takes place but above which
coating defects may appear. The defects take various forms. These
include waves, lines and pocks. Of these the pocks are the most serious
as they correspond to a substantial local thinning of the coating which
will produce a dramatic reduction of the corrosion protection.

An improved model has been developed. Steady-state conditions
are found and then several different perturbations are considered to
investigate whether increased pressure causes possible instabilities in
the flow. Simulations are carried out to further explore the problem
and to verify the theoretical conclusions.

2. Modelling the coating process

The development of the mathematical model (also described in [6])
parallels that of Tuck [1]. The resulting equations are the same but
with the addition of a term for the surface shear stress due to the air
knife. We adopt the coordinate scheme shown in Figure 1. The flow is
assumed to be two-dimensional, incompressible, laminar and unsteady.

The flow is governed by the two-dimensional Navier-Stokes equa-
tions

ut + uux + wuz = −1
ρ
px +

µ

ρ
(uxx + uzz) − g (1)

wt + uwx + wwz = −1
ρ
pz +

µ

ρ
(wxx + wzz) (2)

ux + wz = 0 (3)

where t denotes time, x and z respectively denote the vertical and
horizontal coordinates, ~q = (u, w) denotes the fluid velocity, p denotes
pressure, ρ denotes density, µ denotes dynamic viscosity, and g is the
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Figure 1. A schematic of the coordinate system and nomenclature

acceleration due to gravity. Subscripts are used to indicate differentia-
tion. In addition to the initial condition that is required to specify the
problem, there are boundary conditions

u = U, w = 0 at z = 0 (4)

µuz = τa(x), p − pa(x) = −γκ, ht + uhx = w at z = h(x, t), (5)

for which U denotes the speed of the coating substrate, z = h(x, t) is
the equation of the coating layer’s free surface, γ is surface tension and
κ is curvature. The pressure pa(x) and the shear stress τa(x), that are
applied by the action of the air knife, are both assumed to be specified.
As the rate of change of h with x is small, the curvature κ ≈ hxx.

The equations (1)-(3) and boundary conditions (4)-(5) are non-
dimensionalised as follows. We set x = Lx̄, z = εLz̄, u = Uū, w = εUw̄,
t = (L/U)t̄, p = (µU/ε2L)p̄, h = εLh̄, τa(x) = (µU/εL)G(x) and
pa(x) = (µU/ε2L)P (x). Here bars denote non-dimensional variables,
L denotes a typical length over which the air knife is active, and
ε = h0/L << 1 where h0 is a typical value of h. With these scalings,
dropping the overbars for convenience, the equations and boundary
conditions become, to leading order,

px = uzz − S, pz = 0, ux + wz = 0 (6)

u = 1, w = 0 at z = 0 (7)

uz = G(x), p − P (x) = −Chxx, ht + uhx = w at z = h, (8)

jet_tuck4.tex; 25/06/2010; 18:21; p.3
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where S is the Stokes number and C is the product of ε3 with the
inverse of the Capillary number Ca = µU/γ,

S =
ε2ρgL2

µU
and C =

ε3γ

µU
.

P (x) and G(x) are nondimensional air pressure and shear acting on the
surface of the coating. Terms multiplied by ε2Re = h2

0ρU/(µL) ≈ 0.03
(see values in Appendix 1) have been ignored in accordance with the
usual “thin layer” assumptions. The magnitude of the inertial terms
is not as small as one would like, but the effectiveness of the approxi-
mation is clear from comparisons with the application in the industrial
setting. Solving (6)-(8), we find that

p = P (x) − Chxx (9)

u = (S + P ′(x) − Chxxx)
(

1
2
z2 − hz

)
+ zG(x) + 1 (10)

w = −(P ′′(x) − Chxxxx)
(

1
6
z3 − 1

2
hz2

)
+ (11)

1
2
z2hx(S + P ′(x) − Chxxx) − 1

2
z2G′(x). (12)

The pressure and velocity components in (9)-(12) now satisfy all of
the equations and boundary conditions (6)-(8) apart from the last
boundary condition. This final condition now gives a PDE governing
the evolution of h(x, t),

ht +
(

h +
1
2
h2G(x) − 1

3
h3(S + P ′(x) − Chxxx)

)
x

= 0. (13)

Henceforth, surface tension will be neglected since C ≈ 2.5 × 10−6

suggests this term plays no significant role. A consideration of this
factor can be found in Tuck et al [3]. Before we begin to examine the
behaviour of waves or pock-marks, we need to consider the matter of
steady-state solutions to (13).

3. Steady state solutions

The steady state equation is obtained by omitting the time dependent
term from (13). The surface coating thickness h(x) is then a function
of x only, leaving

Q = f(h, x) = h +
h2

2
G(x) − h3

3
(S + P ′(x)), (14)

jet_tuck4.tex; 25/06/2010; 18:21; p.4
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where Q is a constant that must be the flux of fluid in the coating
layer. The flux Q must remain constant as x varies. However, the co-
efficients of the cubic expression, equation (14), will vary continuously
with changes in the shear stress and pressure (G(x) and P (x)). The
steady solution is therefore determined by obtaining the value of the
constant, Q for a given P (x) and G(x).

In [1, 6], it was shown that this cubic equation can be used to obtain
the control point, h = hc that determines the value of Qc by finding the
point at which the cubic has a double root. Tuck [1] showed that this
point corresponded to the minimum of the maximum possible fluxes at
each section (and gave a nice explanation as to why this might be so).

Noting that if we are at the control point (xc, hc), then

∂f

∂h
(hc, xc) = 1 + hcG(xc) − h2

c [S + P ′(xc)] = 0, (15)

and so hc satisfies

hc =
1
2

[
G(xc)

S + P ′(xc)

](
1 ±

√
1 + 4

[
S + P ′(xc)

G(xc)2

])
. (16)

It is possible to show that the negative sign is appropriate here.
The flux Q must be identical for all values of x and from (14), we

find

dQ

dx
= 0 = h′[1 + hG(x) − h2(S + P ′(x))] +

h2

2
G′(x) − h3

3
P ′′(x).

Evaluating this at x = xc, using (15) and the fact hc 6= 0, we obtain

G′(xc) =
2
3
hcP

′′(xc). (17)

Possible locations of xc and values of hc are therefore determined by
solutions to (15) and (17), whence the flux Qc that is required is given
by Qc = f(hc, xc).

A simple implementation of this is to evaluate hc at each point x
from (16) and then find the corresponding flux Q∗ at each point from
(14). The correct values of xc and hc are then those corresponding to
the minimum, Q∗

c .
Implementing this algorithm provides a typical steady-state solu-

tion, as shown in Figure 2. In [6] some functions were chosen to replicate
the behaviour of the pressure and shear, but they were only qualita-
tively correct. Here, we use for the Stokes number and pressure

S = 0.0015, P (x) = PMAX(1 + 0.6x4)−3/2 (18)

jet_tuck4.tex; 25/06/2010; 18:21; p.5
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Figure 2. Typical steady-state solution S = 0.0015, PMAX = 0.01, GMAX = 0.1.
The control point of the flow is indicated.

and for the shear,

G(x) =

{
sgn(x)GMAX

[
erf(0.41|x|) + 0.54|x|e−0.22|x|3

]
, if |x| < 1.73,

sgn(x)GMAX [1.115 − 0.25 log |x|] , if |x| ≥ 1.73.
(19)

These functions were taken from the experimental work of Tu et al [8]
and Elsaadawy [9]. In Figure 2, using PMAX = 0.01, GMAX = 0.1 gives
xc ≈ −1.107, hc ≈ 6.172, the flux is given by Qc ≈ 3.529, the upstream
coating thickness is given by h− ≈ 43 and the downstream thickness
by h+ ≈ 3.33.

The effect of the pressure and shear distribution on the downstream
thickness can be seen in Figure 3. This figure is equivalent to Figure 5
of Tuck [1]. Clearly the final coating thickness decreases as the pressure
of the air jet increases. Corresponding to this is a growth in thickness
of the upstream layer as more of the coating material drains downward.
The optimal flux decreases as the coating thickness is reduced, as would
be expected. The result of Thornton and Graff [5] that the final coating
thickness (shown as the solid line in Figure 3) is approximated well by
the value of the optimal flux (dashed line) as the pressure increases is
clearly seen.

jet_tuck4.tex; 25/06/2010; 18:21; p.6
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Figure 3. The effect of changing pressure and shear stress on the downstream coating
thickness and flux. The dashed line is the flux. These become more alike as PMAX

increases. In all cases GMAX = 10PMAX

4. Analysis of the unsteady equation

Consider a coating process that is established and running in steady
state. As x increases from h− to h+, the coating varies smoothly under
the action of the air knife as described in Section 3. Thus h = h◦(x)
where h◦ is determined by

h◦ +
(h◦)2

2
G(x) − (h◦)3

3
(S + P ′(x)) = Qc

and Qc by solutions to (15) and (17). In [6] an analysis was performed
on the fate of small disturbances to the steady solution. In short, this
suggested that there were regions in which it was possible for distur-
bances to grow in amplitude if a number of conditions were met. Using
the pressure and shear distributions approximating realistic functions
it is possible to consider this behaviour more carefully. If we re-write
equation (13) in the form

ht + c(h, x)hx = A(h, x), (20)

we can see that

c(h, x) = 1 + G(x)h − h2(S + P ′(x)) (21)

represents the speed at which a disturbance will propagate and

A(h, x) = h2(hP ′′(x)/3 − G′(x)/2) (22)

jet_tuck4.tex; 25/06/2010; 18:21; p.7
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Figure 4. Terms c(h, x) and A(h, x) as a function of elevation x for the steady
solution for cases PMAX = 0.001, 0.01 (thicker lines)

represents growth or decay of the signal. If we plot these we can estimate
what will happen. Tuck [1] found that (given his equations (22,23)) the
value of c(h, x) was less than zero if x < xc and greater than zero if
x > xc and it is trivial to show this to be true here also; note that
c(h, x) = 0 at (xc, hc) from (15). This means that disturbances created
before the control point will propagate downwards, back toward the
bath, while those formed after the control point will propagate upwards
and are of major interest.

Figure 4 shows typical forms for c(h, x) and A(h, x) along the length
of the region for a weaker jet, PMAX = 0.001, and a stronger one,
PMAX = 0.01. It verifies the results of the linear analysis [1, 6], but also
shows that the term A(h, x) is only significant over a very narrow region
close to the control point, whereas the wave speed term c(h, x) remains
significant well downstream where it approaches 1 − h2S. Further, for
the weaker jet, gravity plays a more significant role as h is larger and
G(x) is smaller.

The fact that A(h, x) remains small for all pressures suggests that
outside of the region of influence of the jet, a disturbance will be
marginally stable (neither growing nor decaying) confirming the anal-
ysis of Tuck [1].

Hocking et al [6] showed that using different functional forms for the
shear and pressure terms different types of breaking behaviour could
be set up. Here we choose to consider only the more realistic forms
(18,19).

jet_tuck4.tex; 25/06/2010; 18:21; p.8
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Close to the centre line of the jet the behaviour is dictated by the
presence of the jet and the interaction between the shear and pressure
terms. There are regions where higher points travel faster and others
where they travel more slowly, see [6]. Outside of this narrow region,
c(h, x) ≈ 1 + G(x)h − h2S. In the higher pressure case, the value of
c(h, x) is affected much more profoundly by the shear term. If c(h, x) >
1 (the high pressure case), then disturbances will travel upward faster
than the substrate is travelling, and depressions will break forward
(upward). If c(x, h) < 1 (lower air jet pressure) disturbances travel more
slowly than the sheet and depressions will break backward (downward)
into themselves. In the case of bumps, the breaking should be in the
opposite direction.

To test these conclusions, we performed numerical studies to exam-
ine different scenarios.

5. Numerical studies

An accurate numerical scheme was developed using the method of lines.
This method is described in detail in [10], which also provides finite
difference formulae that are of fourth-order (or higher) accuracy for
the spatial derivatives. Given a set of values for h(x, t) at any time
at a discrete set of x values in equation (20) with (21) and (22), and
inputing the known values of P (x), G(x) and S and their derivatives,
an expression for ht can be computed at each point using the fourth-
order formulae of [10]. These were then integrated forward in time using
Octave’s fourth-order lsode routine from an initial state h(x, 0) = h◦

with some perturbation (if necessary) as described below.
The characteristics method used in [6] was very accurate, but could

not be used when the pressure of the jet was varied with time because
of the tendency of points below the control point to move downward
and those above to move upward, leaving minimal resolution near the
central region. The solutions using the method of lines were compared
with those of the very accurate method of characteristics [6] and found
to agree to graphical accuracy for all cases. The method used does
not have the capability to capture shocks, but we are not interested
in following shocks or the actual breaking of wave disturbances other
than to determine if and when they occur.

In all of the simulations that are described below, the initial con-
dition was chosen as the appropriate steady solution computed as de-
scribed above. Cases were considered by either placing an indentation
or bump in the steady solution, to compute the evolution of such under

jet_tuck4.tex; 25/06/2010; 18:21; p.9
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different conditions, or the pressure was pulsed to simulate a “shudder”
in the air-knife.

5.1. Results - Spatial Disturbance

A dip of the form δ(x) = −0.3e−(x−0.5)2 was added to the steady state
coating thickness with “experimental” values S = 0.0015 and a range of
values PMAX = 0.005, 0.05, 0.01 and 0.05 with GMAX = 10PMAX and
its evolution was followed as it travelled upward. The results of these
simulations are shown in Figure 5, in which the same dip is shown
at different times separated by three non-dimensional time units. The
different speeds at which the outer edge of the coating and hence the
disturbance moves can clearly be seen, as the sheet is moving at the
same speed in each case. Note that as the disturbance passes the coating
returns to the “steady” position.

At lower values of PMAX, it is clear that the region that is influenced
by the air jet is very narrow and so the flow is quickly dominated by
the shear and gravity, meaning that points further from the substrate
travel more slowly. Therefore, the indentation steepens at the leading
edge as a prelude to breaking backward into itself.

At the highest values of PMAX, when the coating is very thin, the
shear terms continue to play a role for some time, and create a situation
in which the points deeper in the depression move more slowly, thus
leading to the back of the indentation breaking forward into the hole.

The behaviour for the two intermediate values of PMAX = 0.01, 0.005
in Fig. 5 show that the depression persists for a long distance up the
sheet with only minor perturbations to its shape.

The behaviour of a bump rather than a depression was also as ex-
pected, with bumps breaking backward at lower pressures and forward
for higher values, consistent with the comments above. Again, there is
a middle region where the bumps will persist.

If the coating is thick, as for PMAX = 0.0025, the speed c depends
on h2 and is large enough for the breaking to occur reasonably quickly.
If h is very small, then not only is the coating disturbance moving
upward more quickly, the effect of gravity is greatly diminished, so that
a disturbance will remain almost unchanged for a significant distance
(see Figure 5).

5.2. Results - Pressure variation

Further simulations were conducted in which the pressure of the air
knife was varied with time. In the first case a single pulse in which
the pressure momentarily dropped by a maximum of 20% (and then

jet_tuck4.tex; 25/06/2010; 18:21; p.10
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returned to the original value) was considered and in the second case
it was varied sinusoidally.

The results of the single pulse for the case of PMAX = 0.01 are shown
in Figure 6. They show that even with such a large pulse only a small
dip is created. The pulse generates fairly long wave disturbances that
can be seen propagating both upward and downward. The downward
travelling bump steepens quite rapidly due to the thickness of the layer
there. Once created, the upward travel of the dip follows the pattern
of the dips considered in the previous section.

In the second simulation, the pressure was pulsed according to P (x)+
δP (x, t) = P (x) + DP sinωt, where DP represents the amplitude of
the “shudder”. Results of these simulations are not shown because the
disturbance to the steady state appeared to be minimal, even with DP

as large as 0.2, i.e. a 20% variation in amplitude. A range of different
frequencies were tried at the higher end of the spectrum with similar
minimal effect. Low frequency variations would not be shudder and
would be expected to behave like the single pulse case.
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Figure 6. Development of a depression caused by a single pressure drop. Here,
PMAX = 0.01, GMAX = 0.1. The dip, once initiated, behaves in a similar manner
to those considered above while the remaining surface quickly returns to the steady
solution. The wiggles in t = 10 at the bottom are caused by numerical error as a
shock forms.

6. Conclusions

We have modified the equations derived by Tuck [1] to include a shear
term as in [6] and adapted the analysis accordingly. In addition, we
have used empirically determined shape functions ([4, 7, 8, 9]) for the
pressure and shear.

The results suggest that what happens to a disturbance, once cre-
ated, depends on the shear generated by the air jet at higher values and
is dominated by gravitational effects at lower values. Numerical results
confirm this hypothesis. However, there is no doubt that disturbances
of any sort will persist much further up the sheet if the coating is
thinner, as the effect of gravity on the thinner coatings is not sufficient
to cause the dip to break back into itself and close. Surface tension
and metallurgical effects of solidification may combine to reduce the
size of these disturbances or prevent breaking of the waves in some
cases. However, surface tension is likely to play a very small role except
in exceptional circumstances [3]. Metallurgical effects are beyond the
scope of the present analysis and will occur beyond the region of interest
considered here.
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It is of some interest to examine the dimensional values, although
they are dependent on the choices for the “typical” values and occur
in quite complicated combinations. However, using the values given in
Appendix A, PMAX ≈ 0.01 (for which the air jet speed is 28ms−1 and
the sheet is moving up at 2.5 ms−1) corresponds to a final coating thick-
ness of around 15µm. Effectively higher PMAX values can be obtained
by increasing the air jet speed or decreasing the speed of the sheet. If we
take this to be a typical case, the transition to potential “problem” cases
would occur when the coating thickness drops below h ≈ 1 (a “real”
value of around 5 µm) which corresponds to PMAX ≈ 0.05 or a doubling
of the air-jet speed (see Figure 5) in combination with a slowing of the
upward speed of the sheet. It is clear that a significant increase in air
jet speed is required to obtain thinner coats unless the upward speed
of the sheeting is reduced. Slowing the sheet speed, although it has
the apparent effect of an increase in pressure, does allow more time
for any dips or bumps to “break” or even out. The accuracy of these
calculations in a real situation depends on the actual values for the
other parameters and these numbers are given as an indication only.

The work of Tuck [1] has been largely validated as a basis for consid-
ering this problem. His conclusion of any disturbance being marginally
stable is accurate and it is the fact that the propagation speed depends
on the coating thickness that provides some clue as to why a thinner
coating may lead to problems.

Importantly, there is no evidence of any “catastrophic” change in
the fluid dynamics of the process at higher air jet pressures that might
be responsible for the pitting of the surface, but it is clear that any
damage to the surface coating is more likely to persist if the coating is
thinner.
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Appendix

A. Typical values used;

The list below gives typical values used in this work.

− d = half-width of the steel strip ≈ 10−3m

− g = gravitational acceleration ≈ 9.8 m s−2

− γ0 = surface tension coefficient of the coating layer ≈ 10−1 N m−1

− h0 = scale of thickness of coating layer ≈ 5 × 10−6 m

− L = vertical length scale - half-width of air jet ≈ 5 × 10−3m

− µ = dynamic viscosity of the coating ≈ 10−3 kg m−1s−1

− ρ = density of the coating ≈ 3 × 103 kg m−3

− ρs = density of steel ≈ 7 × 103 kg m−3

− U = upward speed of the metal sheet ≈ 2.5 m s−1

− Ua = maximum centerline speed of the air jet ≈ 30 m s−1

Using these values, the scalings for the pressure and shear stress are

− Pressure scaling µU
ε2L

≈ 5 × 105 kg m−1s−2

− Shear scaling µU
εL ≈ 500 kg m−1s−2

and the non-dimensional quantities that appear are

− Capillary number (Surface tension) Ca= µU
γ0

≈ 2.5 × 10−2

− Reynolds number Re = ρUL
µ ≈ 33, 750

− Stokes number S = ρgh2
0

µU ≈ 0.0002

− Length ratio ε ≈ 10−3
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