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Group invariant solution for a pre-existing fluid-driven
fracture in impermeable rock
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Abstract. The propagation of a two-dimensional fluid-driven fracture in impermeable rock is
considered The finid flow in the fracture is laminar By applying lubrication theory a partial
differential equation relating the half-width of the fracture to the fluid pressure is derived To
close the model the PKN formulation is adopted in which the fluid pressure is proportional to
the half-width of the fracture. By considering a linear combination of the Lie point symmetries
of the resulting non-linear diffusion equation the boundary value problem is expressed in a form
appropriate for a similarity solution The boundary value problem is reformulated as two initial
value problems which are readily solved numerically The similarity solution describes a pre-
existing fracture since both the total volume and length of the fracture are initially finite and
non-zero. Applications in which the rate of fluid injection into the fracture and the pressure at
the fracture eatry are independent of time are considered
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1. Introduction

The analysis of a fluid-driven fracture in rock has many applications in science
and engineering Fracture mechanisms may be responsible for the formation of
intrusive dikes and sills and for the migration of magma through the lithosphere
[1-4]. In oil recovery processes, pumped water is used to enlarge underground
fractures [5]. It has also been proposed that ultra-high pressure water could be
used to open fissures in rock in mining

In this paper a similarity solution is derived for a two-dimensional fluid-driven
fracture in rock. The two-dimensional model implies that the fracture is infinitely
long in the third direction. In applications the breadth is finite and the solution
will apply only if the breadth is sufficiently iarge that end effects can be neglected.
The fracture is one-sided and the fluid, which is incompressible, is injected into
the fracture at one end. The rock is assumed to be impermeable and therefore
leak-off of the fracturing fluid is neglected It is also assumed that the fluid flow
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in the fracture is laminar. In some applications the flow will be turbulent [2] The
extension to turbulent flow of the new method of solution that we consider could
be investigated It is also assumed that lubrication theory is applicable.

The pressure of the fluid in the fracture is not determined by lubrication theory.
The closure of the equations can be achieved by considering the elasticity of the
rock If the displacement gradients in the rock are small, linear elasticity can be
used [6,7]. We will adopt the PKN model in which the fluid pressure is proportional
to the half-width of the fracture. The model was first developed by Perkins and
Kern [8] and Nordgren [9]

The initial volume and length of the fracture are finite and non-zero. The sim-
ilarity solution therefore describes the propagation of a fluid-driven pre-existing
fracture. The pre-existing nature of a fluid-driven fracture does not seem to have
attracted much attention in the literature. The solution may be particularly valu-
able for processes which depend on the existence of pre-existing fractures, such
as the fracturing of rock by ultra-high pressure water The similarity solution
contains an undetermined parameter which can be used to impose on the solution
a range of conditions at the fracture entry. The condition that the rate of fluid
injection into the fracture is independent of time and the alternative condition
that the pressure at the fracture entry is independent of time can both be imposed
on the similarity solution.

An outline of the paper is as follows. In Section 2 the equations describing a
two-dimensional fluid-driven fracture are formulated using lubrication theory. A
differential equation relating the half-width of the fracture to the fluid pressure
is obtained. In Section 3 the PKN fracture hypothesis is invoked which yields a
nonlinear diffusion equation for the half- width of the fracture. By considering
a linear combination of the Lie point symmetries of the nonlinear diffusion equa-
tion a group invariant solution is derived which leads to a similarity solution for
the propagation of a two-dimensional fluid-driven fracture The boundary value
problem is reformulated as two initial value problems In Section 4 the general
properties of the similarity solution are investigated. Applications of the similarity
solution when the rate of fluid injection into the fracture is independent of time
and when the pressure at the fracture entry is independent of time are considered
Finally, concluding remarks are made in Section &

2. Two-dimensional fluid-driven fracture

We consider a two-dimensional fluid-driven fracture model for impermeable rock.
The two-dimensional model was first developed by Khristianovic and Zbeltov [10].
A review of hydraulic fracture modelling has been given by Mendelsohn [11]. The
nomenclature and coordinate system used are illustrated in Figure 1. Since the
rock is impermeabie there is no leak-off of the injected fluid. The fracture is one-
sided and propagates in the positive z-direction It is identical in every plane, y =
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z=h {9

Figure 1. Schematic diagram of the coordinate systern and nomenclature used for
two-dimensional fracture modelling.

constant, and at time ¢ it has length L{t) and half-width A(z,t). The boundary
of the fracture is z = +h(z,t) with 0 < 2 < L(£). The fluid flow in the fracture is
independent of y and obeys the Navier—Stokes and conservation of mass equations

1
q; +(a-V)g= —Evp‘l‘ vV, V q=0, (2.1)

where q = {(u(z, 2,1),0,w(z, 2,1)) denotes the fluid velocity, the fluid pressure
is denoted by p{zx,z,t) and it is assumed that body forces may be neglected.
To simplify (2.1) for a thin fracture we introduce the dimensionless variables of
lubrication theory [12]. Since the length of the fracture is much greater than its
width, two length scales are used, Lg, a typical fracture length and H, a typical
fracture half-width. Later, Ly is chosen to be the initial length of the pre-existing
fracture. We set & = Loz, h = Hh, z = Hz, u = Uk, @ = eUw®, t = (Lo/U)t and
p = {ull/Lge®)p where € = H/Ly and U is a typical fluid speed in the fracture
in the z-direction. With these scalings, (2.1} become, dropping the overhead bars
for simplicity,

e2Re(uy + ity + Wiy ) = —Pr + € Ugp + Usz, (2.2)
elRe{ws 4+ wwg +ww,) = —p, + e wey + 2w, (2.3)
Uy +w, =0, (2.4)
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where Re = Uf’“ is the Reynolds number. We make the thin fiuid film approxi-
mation of lubrication theory [12],
- H 5 UH?
&‘—L—U<<1, £°Re = vTn
The leading order terms in (2.2) to (2.4) are those of standard two-dimensional
lubrication theory:

< 1. {25)

Dp = Upzy, Pr,=0, uy+w,=0 (2.6)

The boundary conditions at z = +h(z,t) are the no-slip condition for a viscous
fAluid at a solid boundary and the no leak-off condition, namely
Dz 8h

u(z, thiz,t),t) =0, w(z,Lh(z,1),t) = o s = :EE, (2.1)

where % denotes the material time derivative.

Integration of the first two equations in {2.6) subject to the boundary conditions
(2.7) yields p = p(z,t) and

u(z, z,t) = —% (W (1) — %) %(m, 1) (2.8)

Integrating the last equation in {2.6) across the fracture, using the formula for
differentiation under the integral sign [13] and the boundary conditions (2.7) gives
the congervation equation

oh 18 fh(wﬂﬂ

- =0. 2
5 250 _h(m,t)u(w,z,t)dz 0 (29)

Finally, substituting (2 8) into {2.9) yields

8h 19 dp
AL I Ll
ot 30z ( 8:0) (210)
Consider now the remaining conditions. At the fracture tip,
R{L(£),t) =0 {211)

Also, let V(t) denote the total volume of the fracture per unit length in the y-
direciion:

Vi) =2 fo " ety (212)

Since the fluid is incompressible, the time rate of increase of the total volume of
the fracture per unit length in the y-direction is equal to the rate of flow of fuid
into the fracture per unit length in the y-direction at z = 0

h(0,t)
% = 2] u(0, z,t)dz (2.13)
0
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Using {2 8) for u({0, z,t), equation (2.13) becomes
dv
— =
Equation (2 14) gives the time rate of fluid injection into the fracture per unit

length in the y-direction A further condition that may be specified is the initial
fracture shape:

2 3p
_gh?’(o,t)%(o,t) (2.14)

h(z,0) = ho(z). (2 15)

In general it will not be possible for & similarity solution to satisfy (2.15) for
arbitrary ho{xz).

The pressure p(z,t) in (2.10) was not determined by lubrication theory It is
determined from the elasticity of the rock. Many alternative models have been
proposed including linear elasticity if the displacement gradients in the rock are
small. We will adopt the PKN model [8,9] which relates p(z, t} to h{x, ) and yields
a closed system of equations

3. Group invariant solution for the PKN model

Various arguments have been advanced to justify PKN theory [8,9], but essentially
proponents of PKN theory assume that

p(m, t) = Ah(z,1), (3.1)
where A is a constant that may be calculated from the mafterial properties of the
rock. Equation (3 1) is applicable in lubrication theory because p is independent
of z.

Using (3.1) as a {fracture constitutive law for the two-dimensional model and
redefining time as ¢ = A¢ and suppressing the dash, (2.10) now becomes the

nonlinear diffusion equation
Oh 1a [ 30h
o300 (h a) (32)

for the fracture half-width A(z,%). Equation (3.2) must be solved subject to the
boundary condition (2.11) where the characteristic length is chosen so that L{0) =
1 and subject also to the condition (2.14) where V (t) is given by (2.12). We will
derive a similarity solution by considering the group invariant solution of (3.2)
Although it will not be possible to satisfy the initial condition (2.15) for arbitrary
ho{z), crucially we will impose the condition L(0) = 1 so that similarity solutions
for “pre-existing fractures” may be simulated.

The Lie point symmetry generators of (3 2) may be derived by standard meth-
ods [14]:

b 85 1 9
= XN —m e — Zh—
X1=gp 2=ta ~ 3 (33)
& 2.8 8
Xs=2— + —he Xy= —

dr 3 b Oz
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We consider a linear combination of the Lie point symmetry generators,
X = X;+epXo+c3Xag+ca Xy, (34)

where ¢ to ¢4 are unknown constants. Only ratios of the constants will be deter-
mined because a constant multiple of X is also a Lie point symmetry generator.
Now, h = ®(x,t) is a group invariant solution of (3 2) provided

X (h—®(x,t =0, 35
(h—2@n)| (35)
that is, provided
0 0 1
(Cl + Cgt)—a? + ((34 =+ Cgfl}‘}a = 5(203 and Cg)(I’. (36)
The general solution of (3.6) yields, since ® = &,

1

bz, t) = (e1 +cat) 15 HF(9), (37)
where F'(£) is an arbitrary function of £ and

¢4 + c3

= 3.8
(Cl + CQt)C"_?,/CQ ( }

It (3.7) is substituted into (3 2) then the following ordinary differential equation
for F(£) is derived:

d df d o
— (= —(¢F = _5)F=
03d£( d§)+3d£(£ )+(03 5) 0 (39
We choose ¢4 = 0 so that £ = 0 when z = 0. The boundary condition {2.11)
becomes
L
p—ot® ), (3.10)
(€1 + egt)es/en

If (3.7) is substituted into (2.12) then we obtain

cg L(¢)

2 5 ¢© 1 o1 4o egfe
Vi) = (o Fept)Ser B /‘ 1w pie)de. (3.11)
3 0
Condition {2.14) now becomes, with the aid of the formula for differentiation under

the integral sign [13] and the boundary condition (3.10),

cgz L{¢)

csFS(O)%(O) = (C_Q - 5) fo R (315 (312)

C3

The upper limit in the integral in (3 12) must be constant and imposing L{0} = 1
we find that

L) = (1 + z—jt> ol (313)
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and (3.12) reduces to

—cg/eg
dF cacy
@m0 = (2 5) [T P .14
3 €3 0
Ecquation (3 11) can be written as
$(z2-4)
V() =T (1 + C—Qt) : (3 15)
Cz
where
2 g(m-p) [
A Fle)de (3 16)
0

and V; is the total volume of the fracture per unit length in the y-direction at
t=0
Tn order to further simplify the equations we make the change of variables

¢ = cae; %y " F(&) = e %%G(u) (3.17)
3¢ 3 L(t}a 3 1 3 .
where 0 < u < 1. The problem can be reformulated as follows:

d 5 dG d
T (G d—u) +3d—( uw@@) + (—3 — 5) G= (3.18)
G(1} =0, (3.19)

dG
30)—(0)={ = -5 2
0% 0 ( ) f ) du, (3.20)
C3 %
Vo=2(=2 f G(u)du, (3.21)
Cy 0
f2_a20 (3.22)
C1 €3 C1
a1
(62 5)
V() =Va (1 + ——t) : (3.23)
o czfce
L{t) = (1 + c—t) , (3.24)
1
e\ e \HEY
Mz, t) = ( 3) (1+ 21:) G(u) (3 25)
1 (41

The rate of fluid injection into the fracture per unit length in the y-direction is
from (3 23},

i’ié)
5

W Ses (e 3(
N RV SRS | 396
&3 (cz 5) 0( * 1) (3.26)
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From (3.1) and (3 25), the fluid pressure in the fracture is

plz,t) = A (%) : (1 + Cﬁt) &) G(u) (3.27)

Tt can be verified that for all values of c3/cs the asymptotic solution as v — 1 of
(3.18) that satisfies (3.19) is

Gu) ~3¥3(1-w)? as w1 (3 28)

The general procedure for solution is as follows The ratio ¢3/es is first determined
from further information For instance, if the rate of fluid injection into the fracture
is specified then c3/cs is determined from (3.26). If the pressure at the fracture
entry is specified then c3/co is determined from (3.27) The ordinary differential
equation (3.18) is then solved for G(u} subject to the boundary conditions (3 19)
and (3.20). The ratio c3/c; is calculated from (3.21) in terms of ¥y which is given
and the ratio cp/c1 is then obtained from (3.22) Finally, V(t), L{t) and h(z,t)
are calenlated from (3.23), (3.24) and (3.25).

The range of values of c3/cy which we will consider is 0.2 < ¢3/cg < 1. From
(3 26), for c3/cy < 0.2, the total volume of the fracture per unit breadth, V'(¢), is a
decreaging function of time which does not describe hydraulic fracture. For e3/co =
0.2, V(t) remains constant. For c3/co = 10, the speed of fracture propagation,
dL/dt, is constant. For ¢s/cy > 1, dL/dt is an increasing function of time which
we do not expect to apply in hydraulic fraeture. Contained in this range are
two important special cases. When the rate of fluid injection into the fracture is
independent of time it follows from (3.26) that c3/ca = 0 8. Also, from (3.27), the
pressure at the fracture entry is

23 _ 1%
o 2

p(0,) = A (gi)% (1 + Cﬁt) a9 G(0) (3 29)

1 1

If the pressure at the fracture entry is independent of time then eg/cy = 0.5. Exact
analytical solutions can be derived for the limiting cases cz/ca = 0.2 and e3/e0 = 1.

Consider first ¢z/es = 0.2 for which V(#) takes the constant value V. Equation
(3.18) can be integrated immediately and the boundary condition (319) at u=1
can be imposed since the asymptotic behaviour of G(u) as u — 1 is known from

(3 28). The solution is
g\ 1/3
cw-(3) a-wps,

s 1 (V\* b (Vo° fl 211/3
=_ -t Z = = I = 1-— du = 0.8413
o 36([)’ o 36([ ) 0( u”)Cdy ;

1/5 1/3
5 (Vo\® W 2
1+ 36 (I) t] G 7] {1 N LZ(t)] '

(3 30)
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Consider next ¢s/cz = 1 for which dL/dt takes the constant value cz/ci. The
solution is

Glu) = 331~ w)'/?,

4/3
C3 Ca 8 3
a o 52370 Vi =% [ + 243V° ] ’ (3.31)
L) =1+ —=V2t, hz,t) = VoL(B)Y3 |1 — 2 v
243 ° ’ 3 L(t)
The differential equation (3 18) has only one Lie point symmetry generator
X—3u§ +2G— (332)

In general it therefore cannot be integrated completely to give an analytical solu-
tion. It is solved numerically for 0.2 < ez/cz < 1 The generator (3 32), however,
is a scaling symmetry and it can be used to transform the boundary value problem,
(3.18)) to (3.20), into two initial value problems which are easier to solve. This was
first done by Blasius for the boundary value problem of steady two-dimensional
flow along a flat plate [15]. The technique has been extended in several ways [16-
20]. To rewrite the boundary value problem, (3 18) to (3.20), as a pair of initial
value problems we first observe, using Lie's equations [14], that (3.32) generates
the transformation

a=wue, G=Ge*, (3.33)
where a is the group parameter Ience G satisfies the scaling transformation
G(u) = A 3G () (3.34)

where A = ¢ The transformation (3 34) leaves the form of the differential
equation (3.18) invariant. Also

G(0) = A723G(0). (3.35)

We choose G(0) = 1 and therefore G(0) = A~>/3. The parameter X is obtained
from the boundary condition (3.19) which becomes G(A) =0.

The boundary value problem, (3.18) to (3.20), can therefore be transformed
into the following two initial value problems:

Problem 1.

o (GSZG) +3£( G) + (— - 5) G =0, (3.36)

G(0) =1, d# (o (— — 5) f G{u)da, (3 37)

where 0 < @ < A and X is defined by
G(AN)=0 (3.38)
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Problem 2.
d 3dG d Ca _
1
G{0) = A, EIE(0) =X (C—Q - 5) f Glu)du, (3.40)
du C3 0

where 0 < u < 1.

The parameter A is obtained from Problem 1 and G(u) is calculated from
Problem 2 which is then substituted into (3.21) to (3 25) to complete the solution
For the limiting case ¢3/cz = 0.2,

G(m) = (?2-) " (% - uB) 1/3, A= ? (3 41)

and G(u) and the remainder of the solution is given by (3.30). For the limiting
case czfcg = 1,

TNV £ S b
Guy=3"(3-a) , A=j3 (3.42)

and G(u) and the remainder of the solution is given by (3.31)

4. Results and applications

The general properties of the solution will first be investigated. Two special cases
will then be considered which are illustrated by three applications that cover a
wide range of values of the parameters

Problems 1 and 2 are solved numerically for 02 < ¢3/ce < 1 using standard
initial value solvers in MAPLE 9. The calculations are readily performed and may
be carried out in a few seconds of CPU time For ¢3/co = 0.2 and 1, the numerical
results were found to agree with the analytical results given by (3.30) and (3 31).

The results (323) to (3.25) for V(¢), L(t) and h(z,t) depend on cz/cy and
Vo and are expressed in terms of time ¢ which is made dimensionless by division
by Lo/AU The dimensionless parameter Vp is the initial volume of the fracture
per unit breadth in the y-direction divided by HLy where H is a typical fracture
half-width. We choose ¥ = 1 throughout this section.

The numerical results for 0.2 < ¢g/ez < 1 and ¥ = 1 are displayed in Table
1 and the fracture length L{#) is plotted against the time t in Figure 2. For
ca/ez = 0.2 the volume V of the fracture is constant, for ¢3/ca = 0.5 the pressure
at the fracture entrance, p(0,f), is constant, for c3/co = 0.8 the rate of fluid
injection into the fracture, dV/d¢, is constant and for ¢s/ez = 1 the speed of
propagation of the fracture, dL/dt, is constant

From Table 1 we see that dL{0)/dt decreases steadily as c3/c; increases from
0.2 to 1.0. The fracture length L(¢) is bounded by the analytical results, (3.30)
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= 2 A v L) FO=2
0.2 0.2332 0.4714 1 {1+ 0.233)1/5 0.0466
0.3 0.1317 03942 (1 +0.1320)1/8 (1 +10.132£)3/10 0.0395
0.4 0.0920 0.3684 {1 +0.0028)1/2 {1+ 0.092t)%/% 0.0368
0.5 0.0708 0.3554 {14+ 0.0718)/2 {14 0.071¢)1/2 0.0354
0.6 0.0575 0.3475 (1 +0.058)2/3 (14 0.058¢)3/5 0.0345
0.7 0.0485 0.3422 (14 0.048¢)%/6 {1+ 0.048t)7/10 0.0339
0.8 0.0419 0.3384 1+ (h042¢ (1+0.0420)%/5 0.0335
0.9 0.0369 0.3356 (1+0.037)7/8 (1 +0.03874)°/10 0.0332
1.0 0.0329 0.3333 (1 +0.0336)%/3 1 0.033¢ 0.0329

Table 1 Parameter values for the fracture lengths L(%) with ¥y = 1. The characteristic length
is the initial length of the fracture Ly and the characteristic time is Lo/UA

i}_IlIIllll.lllllllllllllllll

20 40

60

80 100

Tigure 2. Fracture length L(t) plotted against time ¢ with Vp =1 and c3/e2 = 0.2,0.3, ..
The characteristic length is the initial length of the fracture Lg and the characteristic time is

Lo/UA.

1.0

for ca/co = 0.2 and (3 31) for cs/co =1.0. For ¢ £ 5 and for 02 < cz/cp <1,

1/56
8 5 /Vo\®
— V3t < < — (2 :
1+243V0tﬁL(t)_ 1+36(I) ¢ (4.1)
while for ¢ > 5 the opposite is the case and
1/5
5 /Vo\° 8
= [2 < <1+ —Vit X
1+36(I) t < L) < +243V5t (4.2)

By scaled time ¢ = 100, the pre-existing fracture with length Lo has propagated




1060 A D Fitt, D P Mason and E A Moss ZAMP

h{x.t)

04

Figure 3 Fracture half-width h(x,t) plotted against x for values ¥p =1, c3/ca =0T and t =0,
5, 10, 20, 50 and 100 The characteristic time is Lo /UA

to length 1.89Lg, 2.85Lp, 3 74Lp and 4 3Ly for es/c; = 02, 05, 0.8 and 10
respectively

In Figure 3, h(z,?) is plotted against z for ¥y = 1 and for a range of values
of time with ¢3/c; = 0.7 The spatial gradient of h(z,t) is negative infinity at
the fracture tip, # = L(t). This also applies to the analytical solutions (3.30}
and (3.31) for ¢z/cz = 0.2 and 1.0. The assumptions (2.5) of lubrication theory
consequently break down at the fracture tip.

Consider now A which occurs in the characteristic time Lq/AU. Expressed in
dimensional variables, (3 1) is

p(z,t) = Aph(z,1) (43)
where Ap has dimensions of Pa m™ We will take (8, 21]
E
Ap=+——F—5
b a-e)p’ (44)

where F and o are the Young’s modulus and Poisson ratio of the rock and B is
the breadth in the y-direction of the fracture. Since the characteristic pressure of
lubrication theory is

wl Lo
P= e (4.5)
the dimensionless parameter A is related to Ap by
H3
A= Ap. (46)

ulULy
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Substituting (4.4} into (4 6) yields

_ EH3

o (1—oHulULyB ‘
Tn order to obtain mumerical results we transform back to dimensional variables.

"The characteristic length is Ly and the characteristic time is Lo/AH. Equation
(3.24) expressed in dimensional variables is

A 47

AU |/
L(t) = Lo [1 + z—?L—Dt] . (4.8)

The ratio cz/c1 depends on Vj and on ¢3/cp. It is given in Table 1 for Vo =1 and
02 < czfer < 1. Using (4.7), (4.8) becomes

EI® es/es
L{t) = Lo [1 +2 ] (4.9)

5t
C1 (1 — Jz)MBLg
Lubrication theory will apply throughout the propagation if the conditions (2.5)
are satisfied The Reynolds number for flow at the eniry to the fracture is [1, 2]
_2HU
I

The onset of turbulence is usually taken to be at Re* ~ 10% [1, 2]. We now consider
two important special cases

Re*

(4.10)

4.1. Constant rate of fluid injection

When the rate of fluid injection into the fracture is independent of time, cz/cz =
0.8. For ez/cy = 0.8 and Vo = 1, ca/e1 = 0.042 and (4 9) becomes

EHS 4/5
L) =1¢ [14+0042-— =51 4.11
=10 100827t 1
The speed of propagation of the fracture when cz/c; =08 and Vp =1 is
dL EH? EH? Ik
— =0034———— 11 042 —————=1 412
& VO oL, { 002 sy B ] (412)
The rate of fluid injection into the fracture is
dv
A=—m¥! .
P (4.13)
and is a given constant. The characteristic fluid velocity in the z-direction is
A
=-— 14
U Vi {4.14)

Consider now two applications with A constant
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(i) Formation of dikes and sills

Consider the formation of a dike or sill in the Farth’s crust by the injection of
magma into a pre-existing fracture which then starts to propagate The magma is
supplied at a constant rate through a conduit. Parameter values given by Spence
and Turcotte [1] are used and are given in Table 2. These authors did not specify
the breadih, B, of the fracture. A reasomable value is B = 300 m. The duration
of the fluid injection after the fracture starts to propagate is 10° s (16 6 min).
The results for a pre-existing fracture of length 100 m are presented in Table 3
for Vo = 1 After 10 s this fracture has propagated to 2.2 km. The initial speed
of propagation of the fracture is 3.7 ms—' and this decreases to 1.7 ms™' after
10 s. The characteristic fluid velocity is 2 ms ™. From (4.5), the fluid pressure
at the start of propagation is about 0.3 MPa (1 MPa = 10% Pa) which increases
to about 7 MPa as the length of the fracture increases to 2 2 km. The conditions
for lubrication theory and laminar flow are satisfied.

Formation
of dikes 1.0 2 6x10%| 102 4x1072 | 2x10' {025 025 | 300 {100 10° |0§
and skills

Enlarge-
meni of
fractures |5x1073 10% |9 6x107219 6x10 2|2 6x101° 0 2 |2x107% 15 | 30| 3x10® |0.8
for oil

extraction

[Fracturing
rock with
ultra-high
pressure
water

(250 MPa)

25x108] 10% 18 710758 Tx1078| 7x10' |0.25|5x10~ %1075 0.5[5x107*|0 §

Fracturing
rock with
ultra-high
pressure
water

{1000 MPa)

109 10% |8 7x1078|8 7x10~ 8| 7x10'°® |0 25,5x10~ %1073 0 5[2x10~ 30 5

Table 2 Parameter values for fluid-driven fractures

The resulis are the same order of magnitude as obtained by Spence and Tur-
cotte [1] for a two-sided fracture expanding from a point source, After 10° s, the
length of each side was 2 km, the propagation speed of the fracture was 1 ms—!
and the fluid pressure was 6.3 MPa.

(ii) Enlargement of fractures to enhance oil recovery

The enlargement of fractures by pumping water with additives in order to
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b
o
<

Z 2
LA L) L(ar) e=4 |U=F4|U =25 *Re= L1 | Re* = 2

m |ms ! ms?! ms—? ms!

Formation
of dikes and| 2180 37 1.7 122x1074 20 27 %103 25

skills
Enlargement

offrac- | gop | 0171 009 |29x1075 125 17x 1073 52
tures for oil

extraction

Fracturing
rock with
ultra-high
pressure
water

(250 MPa)

Fracturing
rock with
ultra-high
pressure
water

(1000 MPa)

079 | 760 | 480 10-5 140 8x10~2 | 165 x 10¢

133 | 760 | 286 10675 575 033 6.6 x 10*

Table 3 Resulis derived from the parameter values presented in Table 2 for Vo =1

enhance oil recovery is a well established technique We will assume that the
water is pumped at a constant rate. An estimate of the values of the parameters
is given in Table 2 [21] After the fracture starts to propagate the water is injected
for a further 3 x 10° s (50 min), In Table 3 the results when Vj = 1 are presented
for a pre-existing fracture of length 30 m The fracture propagates to 355 m
after 3 x 10% s with an initial propagation speed of 0.17 ms™* and a final speed
of 0.09 ms~! The characteristic fluid velocity is 125 ms—*. The fluid pressure
at the start of the propagation is, from (4 5), about 0.9 MPa and this increases
to about 10 MPa when the length of the fracture is 3565 m. The assumptions of
Iubrication theory and the conditions for laminar flow are satisfied. These results
are within the expected range of valies for hydraulic fracturing

4.2. Constant pressure at the fracture entry

When the pressure at the fracture entry is independent of time, e3/cy = 0.5. For
c3fco =05 and Vo =1, cafer = 0.071 and (4 9) becomes

EH3 1/2

Lty = 1 fl———st
(1) = Lo |L+0 0T m— 5552

(4.15)
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The speed of propagation of the fracture when cs/co = 0.5 and V=1 is

dr, EH® EHS e
The characteristic fluid velocity in the z-direction is obtained from (4 5):
PH?
U= , 417
Lo (417)

where P is the pressure at the fracture entry.
We now consider an application.

(i) Fracturing rock with ultra-high pressure water

A method has recently been proposed for fracturing rock in mines, namely
using ultra-high pressure water to open fissures in the rock. Experimental evidence
shows that pressures will lie in the range 250 to 1000 MPa and that fracturing takes
place over a deflagration time scale of duration 0 5 x 1072 to 2 x 1073 s. We will
assume that the pressure at the fracture entry is constant over the deflagration
time scale The parameter values are given in Table 2. The pressure dependence
of the viscosity of water is anomalous since it decreases with increase in pressure
[22] From (4 15), the fracture length increases as the breadth decreases. Narrow
fractures will propagate further than broad fractures In order to estimate the
maximum extent a fracture could propagate in the deflagration time scale we
consider a narrow fracture with breadth equal to width: B = 2H. End effects will
be neglected even although they are significant since B is small

Consider first the lower bound, 250 MPa, for the pressure at the entry to the
fracture with time scale 0 5 x 1072 5. In Table 3 the results when V5 = 1 are listed
for a pre-existing fracture of length 50 cm. The fracture propagates to 7% cm
after 0.5 x 10~% s. Initially the propagation speed of the fracture is 760 ms™*
which decreases to 480 ms ™! after 05 x 1073 s. From (4.17), the characteristic
fluid wvelocity is 140 ms~—'. The assumptions of lubrication theory are satisfied
but Re* = 1.65 x 10* which is in the turbulent flow regime. The fluid velocity in
the [racture will decrease as the fracture propagates and from (4.17) it will have
reduced to about 90 ms~! when the length of the fracture is about 80 cm.

Finally, consider the upper bound, 1000 MPa, for the pressure at the fracture
entry with time scale 2 x 1072 s A pre-existing fracture of length 50 cm is again
considered and the results when Vy = 1 are listed in Table 3 The length of the
fracture after 2 x 10~ s is 1.33 m. The initial speed of propagation of the fracture
is 760 ms™* and the final speed is 286 ms~! From (4.17), the characteristic fluid
velocity is now 575 ms~1. This yields £2Re = 0.33 which is approaching the limit
beyond which Inbrication theory ceases to be valid. Since Re™ = 6.6 x 10* the
flow is in the turbulent regime From {4 17), the fluid speed will have decreased
to about 215 ms ! when the fracture length is 1 33 m

Thhis preliminary analysis shows that for a fracture to propagate to a significant
extent its breadth must be small, of order of magnitude the width of the fracture
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This appears to indicate that the process would not break the rock into blocks
The process would result in the strength of the rock being reduced due to the
propagation of microcracks.

The results are the same order of magnitude as reported by Meglis et. al.
[23] when investigating the damage induced during excavation of a test tunnel in
granite. They found microcracks as deep as 1m from the tunnel wall.

For the parameters used the fiuid flow in the fracture is turbulent The theory
of turbulent fluid fracture should be applied [2]

5. Concluding remarks

By adopting the PKN elasticity hypothesis, and using the Lie point symmetries
of the resulting nonlinear diffusion equation we were able to derive a similarity
solution for a fluid-driven fracture in rock and to reformulate the boundary value
problem as a pair of initial value problems The pair of initial value problems were
easier to solve than the original boundary value problem.

The similarity solution has several useful features. It describes the fluid-driven
propagation of a pre-existing fracture. The role of pre-existing fractures may
be key to deciding whether or not hydraulic fracturing is viable as a means of
fracturing rock in mining. The solution contains an undetermined parameter,
c3 /¢y, which can be chosen to impose a range of operating conditions at the entry
to the fracture. The two important conditions, constant rate of fluid injection into
the fracture and constant pressure at the fracture entry, can be imposed. Other
operating conditions can be considered. For example, if the rate of working of the
pressure at the entry to the fracture is independent of time, which may apply if
fluid is injected by a pump working at a constant rate, then

p(U,t)%g = constant. (51)
Condition (5.1) is satisfied provided c3/co = 5/7 = 0.714.

Tn the PKN model, the fluid pressure is readily derived since it is proportional
to the half-width . An advantage is that conditions based on pressure at the
fracture entry can be easily imposed on the similarity solution However, the
pressure at the fracture tip is necessarily zero and therefore no stress intensity
factor can be defined in a meaningful manner. Expounents of the PKN model
have developed various ways of dealing with this shortcoming, but it remains an
underlying difficulty of the PKN model

At the extreme conditions of short time scales as may exist, for example, in the
proposed mechanism for fracturing rock by ultra-high pressure water, it is pos-
sible that standard lubrication theory may no longer be appropriate and instead
the “impulsive” lubrication theory equations, where a u; term is included in the
momentum balance equation, should be used. The conditions for impulsive Tubri-
cation theory to apply can easily be derived- in addition to € < 1 and g?Re < 1,
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we find that the u; term should be included whenever
H? > v, (5.2)

where 7 is the time scale If these circumstances do pertain, however, the problem
is significantly more complicated

Extensions of the group invariant solution could be addressed in future studies
Fluid leak-off at the fracture tip and at locations on the fracture boundary was not
included and can be important [24] At the ultra-high pressures considered in rock
fracturing the fluid may slip on the fracture boundary [25] and the dependence
of viscosity on pressure may be significant [26]. The extension to turbulent fluid
fracture should be considered.
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