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Modeling the Fabrication of Hollow Fibers:
Capillary Drawing

Alistair D. Fitt, Kentaro Furusawa, Tanya M. Monro, and Colin P. Please

Abstract—A method for modeling the fabrication of small-scale
hollow glass capillaries is developed. The model is based on an
asymptotic analysis of the Navier-Stokes equations, which yields
a simple closed-form solution for this problem. We demonstrate
the validity of this approach using experimental data and use it to
make predictions for a range of regimes of interest for the develop-
ment of microstructured optical fiber technology.

Index Terms—Mathematical modeling, optical fiber, optical
fiber applications, optical fiber fabrication, optical fiber theory.

I. INTRODUCTION

T HE past few years have seen the emergence of an impor-
tant new class of optical fiber, the holey or microstruc-

tured fiber. The transverse profile of a microstructured fiber
contains an array of air holes that run along the fiber length.
Holey or microstructured fibers guide light due to the effec-
tive refractive index difference between the solid core and the
cladding, which is laced with air holes. These fibers may be
made from a single material, often pure silica; two examples
are shown in Fig. 1. The effective index contrast can be a strong
function of wavelength of the light guided by the fiber. This
is particularly striking when the structure scale is small, and
leads to a host of highly unusual and tailorable optical properties
[1]–[4]. For example, holey fibers with small holes can be end-
lessly single-mode, regardless of the wavelength [1]. Depending
on the cladding configuration, such fibers can have mode-area
values ranging over three orders of magnitude, and can display
anomalous dispersion throughout the visible spectrum.

The presence of air holes in such microstructured fibers opens
up a vast new range of potential applications. These range from
small mode area, highly nonlinear fibers for novel nonlinear
devices [4] to large mode area fibers for high-power delivery
[5], [3]. Different cladding structures may also allow dispersion
compensation [6] or dispersion flattening for wavelength divi-
sion multiplexing (WDM) telecommunications systems [7], [8].
In addition, the presence of air holes may be directly exploited
for applications in evanescent-field sensing [2].

Another type of microstructured optical fiber is the photonic-
bandgap fiber. These fibers guide light by making use of the
photonic bandgaps that can occur in a periodic structure [9]. A
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further example of a microstructured fiber is the atom-guiding
fiber [10]. In this latter example, metal electrodes are inserted
into four holes in the fiber, and by running currents along these
wires, a magnetic potential can be established that then acts to
guide atoms down another hole in the center of the fiber.

Microstructured fibers are produced by drawing a macro-
scopic preform (typically a few centimeters in diameter) down
into a fiber (typically 125 m in diameter) using a conventional
fiber-drawing tower. These preforms can be made in a variety
of ways, and the two most common approaches are described
briefly here. One method involves stacking small capillaries
around a solid rod, which ultimately forms the fiber core.
This approach is generally preferred when large air holes are
required in the final fiber structure. Alternatively, the required
arrangement of holes can be drilled directly in a solid glass
blank. This works well when only a few well-separated holes
are required, as, for example, in the case of atom-guiding fibers.

Regardless of the method used to produced the preform, the
geometry of the final fiber can be modified significantly by con-
trolling the parameters used in the drawing process, i.e., the tem-
perature of the furnace, the speed at which the preform is fed
into this furnace, and the draw speed. For example, when high
temperatures or low draw speeds are used, the air holes in the
cladding reduce in size and may even close completely because
of surface-tension effects. It is often desirable to take advantage
of this collapse process to tune the final size of the small air
holes in the resulting structure during fabrication. In this way, a
range of fibers with dramatically different optical properties can
be produced from a single preform. At the other extreme, large
holes are required to obtain tight mode confinement or full pho-
tonic bandgaps, and so it is desirable to avoid any collapse of
the air holes.

Theoretical predictive studies of fiber drawing grew, for the
most part, out of theory that had already been developed for
the textile industry to model the spinning of molten threadlines
[11]–[14]. This general methodology was then adapted to
optical fiber drawing. A great deal of the literature concerns
fiber-drawing models that are essentially small perturbations
about prescribed steady unidirectional extensional flows.
Various studies have considered the additional effects of heat
transfer [15], surface tension [16], weak unsteadiness [12], and
inertia [13]. The effects of both gravity and inertia were in-
cluded in a general theory of slender viscous fibers of arbitrary
cross section [17]. Fiber breaking has also been considered. In
[18], Dewynneet al. proposed an asymptotic model of fiber
drawing that was essentially similar to [16], but showed that,
unless the initial conditions possess certain singularities, the
cross-sectional area cannot be made to vanish in finite time.
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(a) (b)

Fig. 1. Two typical silica holey fibers. The fibers on the left and right have core diameters of approximately 2.5�m and 5�m, respectively.

A number of purely numerical studies of optical-fiber
drawing have also been made (see, for example [19], [20], and
[21]). It does not appear, however, that any detailed theory
has yet been proposed for fibers that have a cross section con-
taining holes. The drawing of thin-walled viscous capillaries
was modeled in [22] and [23] (see also [24]), and [25] made
some basic estimates of the strength of hollow glass fibers for
use in reinforced plastics. Because the optical properties of
a microstructured fiber depend critically upon the sizes and
locations of the holes in the cladding, it is important to be able
to predict how the fabrication parameters influence the final
fiber cross section. In order to accomplish this, we develop
below a theoretical framework for investigating the drawing of
glass capillaries. Our analysis exploits the long thin geometry
of the draw region and may be applied to capillaries of arbitrary
dimensions. The fabrication of capillaries is an important ele-
ment of the manufacture of microstructured fibers, and, hence,
the established theoretical framework forms the foundation for
modeling the fabrication of more complex structures.

II. M ATHEMATICAL MODELING

To develop a mathematical model for the process of capillary
drawing that is capable of including effects such as surface ten-
sion, varying viscosity, and internal hole overpressure, we begin
from the incompressible Navier–Stokes equations (see, for ex-
ample [21])

(1)

(2)

(3)

Fig. 2. Schematic diagram and nomenclature for capillary.

In (1)–(3), derivatives are denoted by subscripts,measures
the distance along the axis of a capillary, andmeasures the
distance normal to it. The flow and the geometry have been as-
sumed to be axisymmetric, and are, therefore, independent of
the azimuthal angle. The velocity of the molten glass is de-
noted by where and are unit vectors in
the and directions, respectively. A schematic diagram of the
geometry of the capillary is shown in Fig. 2.

The density of the glass is denoted by. Because glass density
is known to be only weakly dependent on temperature, incom-
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pressibility has been assumed and we have used the density of
solidified glass throughout. Pressure is denoted byis the ac-
celeration due to gravity, and dynamic viscosity and surface ten-
sion are denoted by and , respectively. For simplicity, we as-
sume that the furnace temperatureis known, although it may
depend upon , and that the thinness of the fiber means that the
temperature (and, thus, the viscosity) is uniform over the cross
section of a capillary. If this is not the case, then the analysis
may be extended to take into account temperature variations in
a fairly obvious way; we do not pursue this further here. We also
neglect the temperature variation of bothand , because this
is, typically, a very weak effect (see, for example, [26]).

We now assume that the inner and outer radii of the capillary
are denoted by and , respectively.
Thus, (1)–(3) apply in the region and must be
solved subject to suitable boundary and initial conditions, which
will be considered presently.

A. Asymptotic Analysis

It is now appropriate to nondimensionalize (1)–(3) to take ad-
vantage of the small parameters that are present in the problem.
On setting

, and
, where an overbar denotes a nondimensional

quantity and denotes a typical draw length (i.e., the distance
over which the preform is heated by the furnace),denotes a
typical drawn capillary size, denotes a typical draw speed,
and denotes a typical glass viscosity, the equations become

where the nondimensional parametersand the Reynolds and
Froude numbers are given respectively by

For the particular parameter regimes of interest in this study,
the drawing length is 3 cm, and a typical drawn capillary has
an outside diameter (OD) of 1 mm. Thus, , and we
therefore treat as a small parameter. We retain the gravity and
inertia terms in the equations because they may be important
in specific regions of the flow, and their retention leaves the
analysis essentially unchanged. The leading-order equations in

are now satisfied by the obviousansatz

where denotes the nondimensional ambient pressure, defined
by , and from (3) we have

where the function is to be determined. To order, the
-momentum equation is now

(4)

and the -momentum equation gives

which yields , so that is a function of and alone.
To close the problem, initial conditions must be given for

each of the unknowns and we must specify kinematic, normal,
and tangential stress conditions on the two free boundaries.
The kinematic conditions amount simply to the fact that the
total derivative of each boundary is zero at that boundary. Thus,

on
, and, so, in nondimensional form, we

find that

at (5)

at (6)

In practice, it is possible to influence the manufacture of cap-
illaries or optical fibers that contain holes by pressurizing the
holes. Therefore, we wish to include this possibility in our mod-
eling. The normal stress boundary conditions must, thus, include
both the surface tension coefficientand the fiber hole pres-
sure . Defining the nondimensional fiber hole pressure by

, we see immediately that we must further
write

where is the nondimensional hole overpressure. This scaling
reflects the fact that, unless the fiber hole pressure is within

of the ambient pressure, the capillary will either collapse
immediately or explode.

The normal stress boundary conditions may now be applied.
The nondimensional stress tensoris given by

If we now denote the unit outward-pointing normal to
by , the nondimensional normal stress condi-

tions are

at

at

where a nondimensional surface tension coefficient has been
defined by . We further assume that the tangential
stress on both of the fiber boundaries is zero. Thus, for

at , where is the relevant unit tangent vector. The
normal and tangential stress conditions may now be expanded
according to theansatzfor , and . With
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we find that

at

at

at

at

A closed system of equations may now be derived. We inte-
grate times the -momentum (4) from to to yield

(7)

We may now evaluate the kinematic conditions (5) and (6) to
yield

(8)

(9)

The normal and tangential stress boundary conditions, which
are to be applied at and , give, respectively

(10)

(11)

(12)

(13)

The system is now closed, as (7), (8), (9), and (10)–(13)
comprise seven equations for the seven unknowns

, and . The equations may
be simplified a great deal. We regard (10) and (11) as linear
equations for and . Solving, and using (12) and (13) in (7),
we find that the equations that govern the drawing of a capillary
are, thus, (in redimensionalized form)

(14)

(15)

(16)

where denotes the dimensional hole overpressure .
In general, (14)–(16) must be solved given initial conditions

for , and , and subject to suitable boundary
conditions. For the experimental rig that was used, bothand

were known at the top of the furnace , and the feed
speed and the draw speed were prescribed. The boundary
conditions are thus

It is also worth pointing out that, for the furnace used in the ex-
periments described below, the temperature in the hot zone was
assumed to be constant so that the viscositywas independent
of .

B. Solutions to the Steady-State Problem

Because we wish to address the manufacturing process for
capillaries, for the remainder of this study, we shall be con-
cerned only with time-independent solutions to (14)–(16). If re-
quired, the full unsteady versions of the equations may be used
to study both startup problems and the stability of the process.

The time-independent versions of (14)–(16) constitute a or-
dinary differential equation two-point boundary value problem,
which must, in general, be solved numerically. To do this, stan-
dard library routines may be employed. We implemented the
Numerical Algorithms Group, Ltd., (NAG) routine D02HAF,
which uses an efficient Runge–Kutta–Merson method (see, for
example, [27]).

For the particular capillaries that were drawn experimentally,
however, simplifications may be made, because the full gener-
ality of (14)–(16) is not required. In particular, progress may
be made by examining the orders of magnitude of each term in
(14). We find that the inertia and gravity terms on the left-hand
side of (14) are unimportant. In addition, the nondimensional
ratio is small for all and for all exper-
imental conditions (where and are defined at the start
of Section II-A). Thus, the flow is viscosity-dominated, and we
may, therefore, conveniently regard (14)–(16) as a regular per-
turbation problem in . Solving the equations now becomes a
simple matter, and we find that

(17)

(18)

(19)

where

To leading order, the temperature dependence in this problem,
therefore, appears only via the ratio of the surface tension to
the viscosity. Equations (17)–(19) can be used to predict the de-
gree of collapse in the final structure, and suggest that this de-
pends only upon the ratio of the surface tension to the viscosity.
The perturbation solution (17)–(19) has the advantage that the
phenomenological behavior of the solution is readily apparent.
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Fig. 3. Schematic diagram of experimental drawing apparatus.

However, for more general drawing conditions where the pertur-
bation approximations may not be appropriate, the full boundary
value problem must be solved.

III. EXPERIMENTAL STUDY

In order to check the validity of the model, we performed
a simple capillary drawing experiment. This was done using a
silica capillary tube with an OD of 28 mm and an inner diameter
(ID) of 24 mm as the preform. The glass used was Suprasil F300
(Heraeus Amersil, Inc., Duluth, GA 30096), which is a commer-
cially available high-quality low-impurity grade of silica that is
commonly used for the production of low-loss optical fibers.

The preform was heated using a graphite furnace in a
conventional commercially available 5-m-high fiber drawing
tower (Heathway Limited, Wolverton Mill, Milton Keynes
MK12 6LA, U.K.) over a 3-cm hot zone. The preform was fed
into the furnace at a constant speed, and the top end of the tube
was left open to the atmosphere. A laser-based diameter gauge
was located approximately 1 m below the furnace exit, and this
was used to monitor the final diameter of the capillary. The
draw speed was fixed by passing the drawn capillaries through
a pair of wheels whose surface is designed to avoid slippage.
A schematic diagram of the drawing arrangement is shown in
Fig. 3.

For the purposes of this study, 24 experimental runs were car-
ried out. The feed speed was varied between 2 and 8 mm/min,
the draw speed was varied from 0.6 to 1.2 m/min, and furnace
temperatures of 1900, 1950, and 2000C were used. Once
any particular combination of drawing conditions was set, the
process was allowed to stabilize before the final dimensions of
the capillary were measured. Owing to the relatively large dis-
tance between the drawing wheels and the neck-down region, the
system stabilized more quickly at lower temperatures as a result
of the rapid increase of viscosity with reduced temperature.

The final OD of each capillary was measured both using the
diameter gauge and a micrometer, while the final IDs were ex-
tracted from measurements made using an optical microscope.
The validity of our ID measurements was also confirmed using
the law of mass conservation, which requires that, in steady

Fig. 4. Experimental results (symbols) and theoretical predictions using (19)
for drawn outer capillary diameter as functions of draw speed for a range of
furnace temperatures and feed speeds.

state, the feed and draw volume fluxes of glass are equal. Our
experimental results showed only small deviations from this re-
quirement, with a maximum error in volume flux of just over
5%, although the error was less than 2% for the majority of
the experiments. This indicates not only that the final capil-
lary dimensions had been measured accurately, but also that the
process had stabilized sufficiently, prior to measurement.

The final measured outer diameters of the drawn capillaries
are shown (symbols) as a function of the draw speedfor a
range of feed speeds and furnace temperatures in Fig. 4. Fig. 5
shows the corresponding final inner diameters. The basic trends
are unsurprising; for example, faster draw speeds, higher tem-
peratures, and lower feed speeds all result in reduced capillary
inner and outer dimensions.

The theoretical predictions from (19) are indicated by solid
lines in Figs. 4 and 5, and were calculated as follows. We set

cm in (19) and used the known experimental
values for , and . One further piece of infor-
mation, namely the ratios at each furnace operating tem-
peratures, is required. This does not appear to be available for
the grade of silica used in these experiments, namely, Suprasil
F300. Therefore, for each furnace temperature, we fitted the the-
oretical model to the experimental data by choosing the param-
eter . The relevant values for 1900, 1950, and 2000C were
1.606 10 m/s, 3.847 10 m/s, and 1.11610 m/s, re-
spectively. These values are consistent with the conventional
premise that, in this regime, the surface tension is a weak func-
tion of temperature but the viscosity decreases exponentially
with increasing temperature (see, for example [26]). Although,
as noted previously, values for the required viscosity–surface
tension ratio do not seem to be available, it is, nevertheless, pos-
sible to compare our fitted ratios with published data for vitreous
silica found in [28]. From [28, pp. 226 and 641], we find, respec-
tively, that kg/m/s and N/m at a temper-
ature of 2000C and, thus, , which is consistent
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Fig. 5. Experimental results (symbols) and theoretical predictions using (18)
for drawn inner capillary diameter as functions of draw speed for a range of
furnace temperatures and feed speeds. The inset shows the drawn diameter ratio
for draw speed of 1.2 m/min for various furnace temperatures.

with our fitted value. It is also possible to carry out a calcula-
tion to determine the activation energy of the viscosity, based on
our three data points. Assuming that the surface tension is con-
stant, we find activation energies in the range 129–165 kcal/mol.
Given all of the uncertainties involved, this compares favorably
with the value of 123 kcal/mol given in [28].

The comparison between the theory and the experimental re-
sults is striking, suggesting that the theoretical model is a pow-
erful predictive tool for capillary drawing. Essentially, the 48
experimental points in Figs. 4 and 5 have been theoretically re-
produced using only three fitting parameters. It should be noted
that the fact that the experimental measurements exhibited only
small departures from the requirements of mass conservation
means that, effectively, the inner and outer diameters are not
truly independent. We conclude that, for a fixed temperature,
the theory is particularly good at predicting capillary diameter
as a function of both draw and feed speed.

The inset in Fig. 5 shows that the experiments were not ge-
ometry-preserving, and some collapse occurred from the orig-
inal diameter ratio of . The amount of collapse
was relatively small. Although experiments with larger collapse
ratios can be performed, they are harder to control and more
sensitive to the drawing conditions. This, of course, is one of
the prime reasons for developing a theoretical modeling capa-
bility, as this provides insight into the sensitivity of the collapse
as a function of the control parameters.

IV. DISCUSSION ANDMANUFACTURING IMPLICATIONS

In Section III, we have shown that the theoretical predictions
for capillary drawing agree well with the experimental results.
The theoretical methods developed here may now be used to
examine further aspects of the manufacturing process. For ex-
ample, let us consider how (17)–(19) may be used to predict
the degree to which the hole collapses during drawing. We con-
sider the case when and make the approximation

, which corresponds to the practically relevant
case of large draw ratio. Equations (18) and (19) become

and, defining the collapse ratio by

so that total collapse occurs when but the preform geom-
etry is faithfully preserved when , we find, on using the
fact that , that many simplifications occur and

(20)

This expression allows us to interpret the sensitivity of the col-
lapse to the physical parameters in the problem. We note, first,
that (20) is independent of to leading order. This indicates
that any collapse that does occur does so when ,
i.e., in the upper part of the furnace. Over the remaining larger
part of the furnace, although the fiber diameter reduces, the fiber
geometry is nearly constant. This may seem counterintuitive be-
cause the surface tension forces that cause the collapse increase
as the radius of the capillary decreases. Although this is indeed
so, the applied tension induced by the drawing process causes
the viscous forces to increase more rapidly with decreasing cap-
illary size, so that the influence of surface tension is most sig-
nificant where the capillary has the largest diameter.

Other manufacturing conclusions may also be drawn from
(20). In particular, depends on the draw and feed speeds only
through the quantity , and, hence, is much
more sensitive to feed speed than draw speed. As far as the ge-
ometry is concerned, depends only upon the quantity

and is, therefore, much more sensitive to the preform inner di-
ameter than to its initial wall thickness ratio as characterized
by , which can lie only in the range .
The hot-zone length is dictated by the furnace design, and
(20) shows that the collapse depends linearly upon. The col-
lapse is, therefore, relatively insensitive to the hot-zone length.
The collapse also depends upon the furnace temperature, which
manifests itself via the ratio in (20). Our results above indi-
cate that for Suprasil F300, a temperature change of 100C re-
sults in changing by a factor of about 10; this behavior can
be taken to be typical for similar silica materials. We conclude
that relatively modest temperature changes of around 10C may
materially affect the collapse ratio.

It is tempting to use (18) to predict when pinch-off will occur
and the hole in the drawn fiber will vanish completely. Still
assuming that , we find that the condition for
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pinch-off to occur at some position before (i.e., in the
furnace) becomes

(21)

Although (21) is not strictly valid, owing to the nonuniformity
of the small expansion in this limiting case, in many circum-
stances, it may be expected to give practical insight into when
pinch-off occurs.

Another fabrication regime of practical interest concerns the
manufacture of fibers in which the preform geometry is pre-
served. In such cases, the quantityin (20) should be small
and the asymptotic approximations are, consequently, particu-
larly accurate. This may be accomplished by using a short hot
zone, a low temperature, a high feed speed, a large inner diam-
eter, or any combination of these.

V. CONCLUSION

An asymptotic fluid mechanics model has been posed for the
drawing of capillaries. The theory not only gives good agree-
ment with experiment, but suggests a number of both qualita-
tive and quantitative conclusions about the process of capillary
drawing that are practically relevant to holey fiber manufacture.

Space does not permit a full discussion of a number of ways in
which the model may easily be refined. In any case, (14)–(16)
are relevant not only for capillary manufacture but also for a
wide range of other practical circumstances. In other regimes
(for example, pressurized holes), different terms in the gov-
erning equations become important and different asymptotic
limits may be analyzed. The model is also readily applicable to
drawing processes involving other materials such as compound
glasses (see, for example [29]).

At present, the theory applies only to the case where one
symmetrically placed circular hole is present. The analysis may
readily be extended to investigate the stability of symmetric cap-
illary drawing, as well as to investigate the effect of any slight
asymmetries that may be present in the initial preform.

For geometries in which multiple holes are present, as in a
holey fiber, the lack of circular symmetry renders the analysis
more complicated. In such cases, the general methodology first
set out in [30] may be employed. The details of the application
of this approach to practical structures will be explained in a
future study.
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