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Abstract

A numerical study of fluid mechanics and heat transfer in a scraped surface heat exchanger with non-

Newtonian power law fluids is undertaken. Numerical results are generated for 2D steady-state conditions

using finite element methods. The effect of blade design and material properties, and especially the inde-

pendent effects of shear thinning and heat thinning on the flow and heat transfer, are studied. The results
show that the gaps at the root of the blades, where the blades are connected to the inner cylinder, remove

the stagnation points, reduce the net force on the blades and shift the location of the central stagnation

point. The shear thinning property of the fluid reduces the local viscous dissipation close to the singularity

corners, i.e. near the tip of the blades, and as a result the local fluid temperature is regulated. The heat

thinning effect is greatest for Newtonian fluids where the viscous dissipation and the local temperature are

highest at the tip of the blades. Where comparison is possible, very good agreement is found between the

numerical results and the available data. Aspects of scraped surface heat exchanger design are assessed in

the light of the results.
� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Scraped surface heat exchangers (SSHEs) are widely used in the food industry for sterilising or
cooling highly viscous fluids such as mayonnaise, cream cheese, peanut butter and ice cream. Such
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Nomenclature

c1c2 constants
cm consistency index (Pa sm)
Cp specific heat at constant pressure (J/kgK)
b heat thinning index (�C)�1

h heat transfer coefficient (W/m2 s)
I2 second invariant of the rate of deformation tensor (s�1)
k thermal conductivity (W/mK)
m shear thinning index (–)
n unit normal (m)
q heat flux (W/m2)
U inner cylinder speed (m/s)
p pressure (N/m2)
Pen penalty parameter (–)
r radial location (m)
Ro inner cylinder radius (m)
Rm outer cylinder radius (m)
SV, ST convergence constant (–)
T temperature (�C)
To reference temperature (�C)
Tw outer cylinder temperature (�C)
DT temperature difference (�C)
v velocity vector (m/s)
u, v velocity components (m/s)
Vmax maximum velocity component (m/s)
x; y Cartesian coordinates (m)
_cc rate of deformation tensor (s�1)
l absolute viscosity (Nm/s2)
lF characteristic viscosity (Nm/s2)
q density (kg/m3)
x angular velocity (rad/s)

Re Reynolds number Re ¼ qURo

lF

Pr Prandtl number Pr ¼ cplF

k

Pe Peclet number Pe ¼ qcpURo

k
Br Brinkman number Br ¼ lFU

2

kDT

Nu Nusselt number Nu ¼ hRm

k
Superscript
* dimensionless quantity
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Fig. 1. (a) Expanded view of a scraped surface heat exchanger and (b) schematic view of the 2D cross section studied.
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fluids are often non-Newtonian and frequently shear–thin; SSHE operation is a combined thermal
and mechanical process whose design and operating principles are poorly understood. In a typical
SSHE (Fig. 1a), fluid is slowly pumped along the annulus between a stationary heated or cooled
outer cylinder and a rotating inner cylinder. Moving blades attached to the inner cylinder scrape
the outer cylinder surface periodically to prevent film formation and promote mixing and heat
transfer. The blades are often manufactured with holes or gaps to allow mass flow through the
scrapers and to reduce the power required for rotation. In comparison with the axial flow, the
rotational flow dominates the mixing process. The high shear region close to the tips of the blades
and the significant thermal effects due to viscous dissipation imply that it is crucial to understand
the local shear and thermal effects in order to predict heat transfer performance. For highly
viscous food materials, thermal diffusion is often very slow compared to convection so that heat
becomes trapped inside closed streamlines. It is therefore also of interest to examine how the
design and material properties will change the streamlines and stagnation zones in the flow.

Though many SSHE experiments have been carried out, difficulties have been encountered
when trying to gain an insight into the interactions between convective and viscous heating.
Published experimental SSHE studies were reviewed by Harrod [1]. Analytical studies of certain
simplified models for SSHEs have also been reported. For example, Fitt and Please [2] studied the
3D isothermal flow of a power law fluid by applying lubrication theory to small annular-gap/
perimeter ratio SSHEs. Their asymptotic analysis provided useful information on velocity profiles
and the location of the centre stagnation point between the blades. Also, the optimal energy
distribution between rotating and pumping was discussed.

As far as numerical studies are concerned, the fact that the viscosity of many foods is a strong
function of both the local shear rate and the temperature, giving a set of highly non-linear
governing equations, often causes practical difficulties. Further complications may be introduced
by the singularity at the tip of the blades where they scrape the outer cylinder. Martin [3] carried
out an early numerical study on heat transfer with power law fluids in a similar geometry. Finite
difference approximations were used to study the heating of thermo-plastic melts during screw
driven extrusion. The inertia terms were neglected in the momentum equation and the flow was
assumed to be fully developed in the axial direction. The temperature distribution was found to be
strongly dependent on the thermal boundary conditions that were specified. Finite element
techniques were employed by Sun et al. [4] to model forced convection heat transfer with viscous
dissipation in steady-state 2D lid driven cavities using power law fluids. The cavity was either
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rectangular or diamond shaped (45 degree parallelepiped) and different cavity aspect ratios were
considered. A range of thermal boundary conditions was also studied. The results showed that the
shear thinning and heat thinning properties of the fluid acted to regulate the local temperature at
corners where singularities were present. The results also indicated that gaps in the cavity wall
tended to remove the large stagnation area close to the bottom of the downstream wall and thus
to improve heat transfer, an effect that was especially pronounced for angled cavities.

For this study, numerical finite element methods were employed using a commercial package
Fastfloe [5] which rather than being a black box CFD code is essentially a finite element partial
differential equation solver. The package is designed such that the user can define the problem, set
the boundary conditions and control the mesh generation and select appropriate numerical
methods and implement these to reach a solution. A Pentium PC with 256 MB RAM and 1 GHz
CPU is used for the computation. A series of numerical tests was carried out to ensure numerical
stability and solution convergence in both lid driven cavity flow [4] and the current geometry
studied. The numerical results were also tested against available published data. Steady-state 2D
flow was studied with both closed and cutaway blades (i.e. with a gap for leakage between the
blades and inner cylinder) with orthogonal or tangential mounting positions. A modified power
law fluid model was used with power law indices of 1.0, 0.8, 0.6 and 0.33. One of the major goals
of this study was to assess the independent effects of shear thinning and heat thinning of the
material on the local and average heat transfer.
2. Differential equations and numerical procedure

2.1. Governing equations

In an SSHE such as that shown in Fig. 1a, a stationary outer cylinder of radius Rm is main-
tained at a constant temperature Tw. The blades are attached to the inner cylinder (radius Ro) that
rotates at a constant speed U . We assume that the density q, thermal conductivity k and specific
heat Cp of the fluid being processed are temperature independent and that there is no phase
change during device operation. During industrial operation, the mean axial flow speed is much
smaller than that of the rotating flow, and in this study the effect of axial flow is neglected. We
consider a 2D cross section of the scraped surface heat exchanger in a rectangular coordinate
system with the frame of reference attached to the inner cylinder i.e. rotating with angular velocity
x ¼ U=Ro. A schematic view of the cross section studied, the blades mounting positions and the
coordinate system is given in Fig. 1b, which shows the outer cylinder rotating in the clockwise
direction. For each mounting configuration, four of these blades are evenly spaced around the
cylinder circumference.

For incompressible viscous fluids, with the Coriolis force neglected, the dimensionless Navier–
Stokes equations can be expressed as [6]
r� � v� ¼ 0

Rev� � r�v� ¼ �r�p� þ r� � l
lF

� �
rv�
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Pev� � r�T � ¼ r�2T � þ Br
l
lF

� �
I�2
where � represents a non-dimensional quantity, v, p and T are the velocity vector, pressure and
temperature respectively and I2 ¼ 1

2
ð _cc : _ccÞ is the second invariant of the rate of deformation tensor

_cc. The characteristic viscosity lF is the viscosity evaluated at _cc ¼ U=Ro and a characteristic
temperature To. The non-dimensional scales for length, velocity and pressure are Ro, U and
lFU=Ro. The non-dimensional temperature is defined as ðT � TwÞ=DT and, unless otherwise
specified, we shall use DT ¼ 20 �C.

The fluid viscosity is both temperature and shear dependent. In this study we used a generalized
shear thinning power law expression of the form [6]
l ¼ cme�bðT�T0ÞI ðm�1Þ=2
2

where cm is the consistency index, the quantities m and b are the shear thinning and heat thinning
indices respectively; both may vary widely with material. A typical value of m for food materials is
0.33 while m ¼ 1 corresponds to a Newtonian fluid. The modified non-dimensional expression is
l
lF

¼ e�bT ððI�2 þ c1Þðm�1Þ=2 þ c2Þ
I�2 ¼ 2
ou�

ox�

� �2
þ 2

ov�

oy�

� �2
þ ou�

oy�

�
þ ov�

ox�

�2
where the constants c1 and c2 are added to ensure that the viscosity has a non-zero finite value in
the whole domain. Values of c1 ¼ 0:000001 and c2 ¼ 0:0001 were used. Numerical experiments
show that this modification has an insignificant effect on the bulk viscosity and the final numerical
results and that it improves convergence.
2.2. Physical parameters and boundary conditions

In the computations reported below, the physical parameters were adapted from data provided
by Chemtech International Ltd. The radii of the inner and outer cylinders were 0.05 and 0.075 m
respectively, giving a radius ratio of 1.5. For an SSHE with four scrapers, this gives an aspect
(length to height) ratio for a typical zone between two scrapers of 3.925. The outer cylinder
temperature Tw was set to 0 �C and it was assumed that there was no heat flow across the inner
cylinder and the blades. The density, characteristic viscosity and thermal conductivity were taken
to be 1200 kg/m3, 6 N/m s2 and 0.6 W/mK respectively. The inner cylinder speed was 1 m/s. This
gave a Reynolds number Re ¼ 10 and a Brinkman number Br ¼ 0:5. The non-dimensional
numbers will change with changes in parameters such as the characteristic viscosity or rotational
speed. For the 2D steady case studied here, it was assumed that there was no axial flow i.e. no net
mass flow out of the system. Heat convection occurring inside the system therefore makes no
contribution to the total heat transfer. The Nusselt number Nu ¼ hRm=k where h is the heat
transfer coefficient (¼ heat flux ðqÞ/temperature driving force); thus Nu ¼ qRm=kDT ¼ �dT �=dn�
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where n� is the unit normal to the surface. Here the total heat flux (or Nusselt number) is in-
dependent of Prandtl number: this was verified by the numerical experiments. During the com-
putations a low Prandtl number was used to give a Peclet number Pe ¼ 100.

The velocity and thermal boundary conditions were set as

Along the outer cylinder
u� ¼ Rm

Ro

sin h

v� ¼ Rm

Ro

cos h

T � ¼ 0:0
Along the inner cylinder and blades
u� ¼ 0

v� ¼ 0

dT �

dn�
¼ 0:0
2.3. Numerical formulation and solution procedure

The governing set of partial differential equations were solved numerically with Fastfloe using
the augmented Lagrangian method. As cited earlier, this package gives the user the freedom to
pose the equations and boundary conditions, and to select and modify suitable computational
methods. A more detailed discussion of the numerical formulation and solution procedure can be
found in [4].

The solution algorithm can be summarised as follows:

(1) An initial temperature field is assumed.
(2) (Inner loop): the temperature dependent viscosity is calculated and the momentum and con-

tinuity equations are solved with the given velocity boundary conditions to obtain the pres-
sure and velocity using the augmented Lagrangian method.

(3) Knowing the velocity, the energy equation is solved with the given thermal boundary condi-
tions to update the temperature field.

(4) (Outer loop): steps (2) and (3) are then repeated until both the velocity and temperature fields
have converged.

2.4. Convergence criteria and mesh design

Solutions are assumed to have converged and the iteration stops if successive solutions satisfy
X
v�n
�� � v�n�1

�� X jv�nj < SV
.
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X
T �
n

�� � T �
n�1

��.X jT �
n j < ST
where, for large power law indices (m >¼ 0:4), SV ¼ 0:000001, ST ¼ 0:000001 and for small power
law indices (m < 0:4), SV ¼ 0:0001, ST ¼ 0:0001.

When generating the mesh, special care has to be taken at the tip of the blades where a sin-
gularity is present. For the current heat transfer computation, the mesh also needs to be con-
centrated along all the surfaces to capture both thermal and momentum boundary layers. This
makes creating sufficient mesh points at the tips (four blades) difficult. A small tip gap (2%) is set
between the blades and the outer cylinder to reduce the difficulty in creating an acceptable mesh.
The mesh is highly concentrated at the tip of the blades and ensures that there at least 5 mesh
points across the tip gap. Mesh configurations were tested by checking the effects of mesh re-
finement on computed values of the stream function and the Nusselt number. Numerical exper-
iments were carried out by increasing the number of nodes from 3470 to 22,602 to ensure that, at
the Reynolds numbers studied, both Newtonian and non-Newtonian results were mesh invariant.
The final mesh used was composed of non-structured triangular quadratic elements. The total
number of nodes used was 14912 with 6908 six-node triangles. Convergence was achieved within
15 iterations.
2.5. Comparison with analytical solutions in tangential annular flow

An important credibility check was conducted by comparing the numerical results with ana-
lytical solutions for tangential annular flow in an annulus without scraper blades. Martin [3] gives
a rather involved analytical solution for the tangential annular flow of shear thinning and heat
thinning fluids. By neglecting heat thinning, a very simple analytical expression may be obtained
which is briefly described as follows. For tangential annular flow between a stationary (x ¼ 0)
inner cylinder of radius Ro and a rotating outer cylinder of radius Rm, assuming an adiabatic inner
cylinder and that the outer cylinder is maintained at a constant temperature Tw, the temperature
in the annulus can be expressed as
T ¼ Tw þ Br
2

m

� �m�1

1

 
� Ro

Rm

� �2=m
!�m�1

Ro

r

� �2=m
 

� Ro

Rm

� �2=m

þ ln
r
Rm

� �2=m
!
DT
where the Brinkman number is Br ¼ lFU
2

kDT
¼ cmR2

ox
mþ1

kDT
.

The average heat flux is thus
Nu ¼ Ro

DT
dT
dr

����
r¼Rm

¼ Br
2

m

� �m Ro

Rm
1

 
� Ro

Rm

� �2=m
!�m
A comparison between analytical and numerical results with Br ¼ 0:5 and 1.0 is given in Fig. 2.
The difference is within 0.1%. Bearing in mind the modifications made to the power law in the
numerical results, this may be regarded as excellent agreement.



Fig. 2. Nusselt number at the outer cylinder for tangential flow in an annulus. Solid lines––analytical results; symbols––

numerical results.
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3. Results and discussion

3.1. Effect of blade design on the flow and the heat transfer

Numerical results were calculated for Re ¼ 10, Pr ¼ 10 and a Brinkman number of 0.5 with a
heat thinning index of 0.05 �C�1 and power law indices of 1, 0.8, 0.6 and 0.33 for different gap
sizes at the root of the blades. For each set of conditions, the velocity, pressure and temperature
fields were determined. The location of the stagnation point between the blades, the net force
acting on each blade and the heat flux at the outer cylinder were then calculated. The results show
that for a shear thinning material the velocity profiles on the centre line between two blades are
flattened and the location of the centre stagnation point is shifted. Fig. 3 shows the velocity
profiles on the centre line between two closed orthogonal blades. The net force reduces with in-
creasing gap size and decreasing shear-thinning index. With 20% gap cutaway blades the net force
is reduced by 20% with orthogonal blades and 28% with tangential blades. The gap size also
affects the location of the centre stagnation point, the temperature distribution and the heat flux.
For m ¼ 0:33, the streamlines are given in Fig. 4a (orthogonal blades) and Fig. 4b (tangential
blades). Temperature contours for orthogonal blades are given in Fig. 5. In all the contour plots
displayed, the contour value varies from 0 at the outer cylinder to its maximum value. We observe
that as the gap increases the high temperature region moves from downstream of the blades to-
wards the inner cylinder. With a 60% gap the centre stagnation zone is completely absent, but the
hot material close to the inner cylinder is trapped. The average heat flux for different gap sizes and
Fig. 3. Effect of shear thinning index on the velocity profiles between two closed orthogonal blades.



Fig. 4. (a) Effect of gap size on flow streamlines for m ¼ 0:33 with orthogonal blade, from left 0%, 20%, 40%, 60% gap.

The stream function value at the outer cylinder is 0. (b) Effect of gap size on flow streamlines for m ¼ 0:33 with tan-

gential blade, from left 0%, 20%, 40% gap. The stream function value at the outer cylinder is 0.

Fig. 5. Effect of gap size on dimensionless temperature contours for m ¼ 0:33 with orthogonal blade, from left 0%,

20%, 40%, 60% gap. The contour value at the outer cylinder is 0.

Fig. 6. Effect of gap size on averaged heat flux (a) orthogonal blades and (b) tangential blades.
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blade mounting positions is shown in Fig. 6a and 6b. With orthogonal blades, the average heat
flux is reduced by less than 3% for a 20% gap. For tangential blades, however, the heat flux is
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increased by 3% for a 20% gap. This may be explained by the removal of the large stagnation zone
upstream of the tangential blades (see Fig. 4b).
3.2. The effects of shear thinning and heat thinning on heat transfer

To study the effects of shear and heat thinning, values of the heat thinning index of 0.0, 0.05
and 0.1 were used. The temperature contours for orthogonal mounted blades with a 20% gap are
shown in Fig. 7. We observe that, for the Newtonian case, the highest temperatures are found
close to the singularity corners. As the power law index decreases the high temperature zone
moves away from the singularity corners. We also note that, for shear thinning and heat thinning
fluids, viscous dissipation is reduced close to the singularity corner. As a result, the local heat
fluxes and also the average heat fluxes are reduced. This can be seen in Fig. 8a and 8b. The
normalized distance is the location of the points along the outer cylinder projected onto the x
coordinate and divided by the radius of the outer cylinder. The lower the shear thinning index, the
lower the local viscous dissipation and heat flux near the singularity corner. This may be un-
derstood as ‘‘self-adjustment’’ of the power law fluid close to the singularity corners. The heat
thinning effect is most significant for Newtonian fluids where viscous dissipation and the local
temperature are maximised at the tips of the blades. It is the local high temperature that brings the
heat-thinning factor into play. The influence of m and b depends upon combinations of the rele-
vant non-dimensional parameters and also on the fluid temperature. The results are consistent
with the results found for cavity flow by Sun et al. [4].
Fig. 7. The effect of m and b on dimensionless temperature contours (20% gap; orthogonal blades). From left m ¼ 1,

b ¼ 0; m ¼ 1, b ¼ 0:1; m ¼ 0:33, b ¼ 0; m ¼ 0:33, b ¼ 0:1. The contour value at the outer cylinder is 0.

Fig. 8. Heat flux at outer cylinder for 20% gap orthogonal blade. (a) Local heat flux and (b) averaged heat flux.



Fig. 9. Effect of characteristic viscosity on heat flux for 20% gap orthogonal blade. (a) Local heat flux for m ¼ 0:33 and

(b) averaged heat flux.
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3.3. The effects of characteristic viscosity on heat transfer

For practical SSHE operations, frequently the characteristic viscosity is the only parameter that
changes between production runs. Using conditions otherwise identical to those used in Section
3.1, for characteristic viscosities of 3, 6, 12 and 30 N/m s2, the relevant Reynolds and the
Brinkman numbers were Re ¼ 20, 10, 5, 2 and Br ¼ 0:25, 0.5, 2 and 2.5, respectively. As explained
in Section 2.2, Pr will not affect the total heat transfer for the current configurations. To get the
same resolution at the wall for the same mesh, the Peclet number remains unchanged. Fig. 9 shows
the effect of characteristic viscosity on the Nusselt number at the outer cylinder for a 20% gap
orthogonal blade. With a characteristic viscosity of 30 N/m s2, Re ¼ 2 and Br ¼ 2:5, a relaxed
convergence threshold had to be set for m > 0:6 because of the high viscous dissipation involved.
We observe that the Nusselt number increases with increasing characteristic viscosity.
4. Conclusions

We have successfully used finite element methods to study forced convection heat transfer in a
steady 2D model of scraped surface heat transfer with power law fluids. The numerical results give
excellent agreement with analytical results where comparison is possible. For shear thinning
materials, the velocity profiles at the centre line between two blades become flattened, the location
of the centre stagnation point is shifted and the net force on the blades is reduced. For a constant
viscosity fluid, the high shear at the singularity corners gives rise to high viscous heating; the
maximum temperature and heat flux are close to the tip of the blades. For shear thinning fluids,
the viscosity is reduced in the high shear region so that both the local viscous heating and the local
wall heat flux are reduced. The heat thinning acts to reduce the viscosity in the high temperature
zone and as a result it also reduces viscous heating and wall heat flux. As the power law index
decreases, the location of the maximum temperature moves away from the singularity corners. Its
location will depend on the particular combination of the parameters describing the flow.

The gap at the root of a blade acts to remove the stagnation zone in this region, and also
reduces the net force on the blades and shifts the location of the centre stagnation point. Small
gaps on tangential blades enhance heat transfer by removing the large stagnation area upstream
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of the blades. Too large a gap should be avoided, since this appears to cause a reduction in
convective mixing and wall heat flux.

The results that have been presented here are two-dimensional only. The heat transfer is thus
dominated by viscous dissipation that is mainly created close to the tip of the blades. The heat
transfer is greatly affected by the characteristic viscosity and the variation in the local viscosity by
shear and heat thinning. Further research is underway to incorporate axial flow into the model.
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