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HYPERBOLICITY MAPS FOR TWO-PHASE FLOW PRROBLEMS

A D. Fitt

Faculty of Mathematical Studies
University of Southamplon
Southemplon 509 5NH, UK

ABSTRACT The governing equations for gas/particulate two-phase flow with added terms are
analysed. Making extensive use of symbolic algebra to perform the lengthy calculations involved,
parameter regimes are determined within which the conservation laws are hyperbolic and the prob-
lem is therefore well-posed

1. The Equations of Motion for Gas/Particulate Two-phase Flow

The precise formulation of systems of conservation laws governing multiphase flow is a topic which
has long caused controversy. Put plainly, the nub of the problem js as follows : if we proceed using
a traditional ‘control-volume’ approach to formulate the equations for inviscid flow, 2 method which
is known to prove successful for single phase flows, then the matrix 4 in the resulting system of first
order partial diflerential equations

w; + Awe =0

where w is the vector of unknowns, may prove o possess complex eigenvalues. This is contrary to
physical intuition and renders the problem iil-posed, so that correct specification of boundary data,
computation of stable numerical solutions and accurate wave speed predictions are all impossible.
This defect has a simple cause; the dependent flow variables in the equations represent guantities
arising from (both ensemble and cross-sectional area) averaging The averaging procedure is un-
avoidable if we wish 1o avoid the hopelessly complicated task of tracking each phase boundary, but
frequently is not carried out with sufficient care, leading to the neglect of important physical terms.
Drew & Wood (1985) showed how to carry out the required averaging rigourously, and emphasized
the need for a careful non-dimensional analysis to decide the dominant terms in the equations of
motion for any given two-phase flow reginie

Concentrating in particular on gas/particulate flow where grains of reactive solid are ignited and
gasified inside a tube of constant cross-sectional area, the equations of motion may beé shown to be
(subscripts indicating differentiation, z along the tube axis)

(atp1)s + {e1prur)e = 10

(e2p2)s + (azpauz): = —mm
{mpur ) + (e1p183Cu)z + aupre = —Capais — u2) o+
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Cpaap(uy — u2)? —ayprgsind
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(adpadr(ur — u2)?)a — Comanpy [(tre + wyu1z) — (uz + upitgs)]—

1 1
(a2prcied (a—l -
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(espr(er +ui/D)e +{mpmCaler +ul/D) + (rena)e + proge =
Cupn(ur — ua)?ay; — (drag(uy = u2)*)z + (rurdroop: (us — uz)?)e—
dr(ezpi(u1 — u2)(er — T2))x + w2Cumezpr [(u1e + vat12) — (uze + ugttos )4
Cpezprur(us — u3)? — oquypagsin 8 + e + u3/2)

Space permits only the briefest explanation of the terms in these equations; a subscript 1 refers to
the gas and 2 to the solid phase, & represents void fraction (a1 + a3 = 1), whilst x, p, preand T
represent respectively velocity, pressure, density, internal energy and temperature. C,;, Cyz 2nd
Cley are profile coefficients which arise from the non-commutativity of the operations of averaging
and multiplication, i characterizes the interfacial mass transfer which arises from the burning, agp
is the settling porosity at which elastic intergranular waves may propagate at speed ¢y, whilst ¢
is the acceleration due to gravity and # the inclination of the tube to the vertical. Cy, ¢1, Com,
Cp, dr. and dr are ceefficients of added terms, representing the effects respectively of interfacial
pressure differences, turbulence, virtual mass, interphase drag, laminar interphase heat transfer and
turbulent interphase heat transfer Throughout we assume that since the solid phase is composed of
incompressible particles, pa is constant. The system is closed by selecting the relevant constitutive
equation for the gas. In this case the perfect gas law

2
€] = ———ar
YY)

has. been used, where v, assumed to be a known constant, is the ratio of specific heats.

2. Hyperbolicity Maps

Cur goal is to examine the effect of different values of the added terms upon the hyperbolicity of
the resulting system In principle, this is easy to undertake; the equations are written as a 5 x 5 first
order system for the unknown quantities py, g1, u1, vz and a; and the eigenvalues are examined
to determine whether the imaginary parts are all zero so that the system is hyperbolic. In practice
however the calculations involved are very large and a symbolic algebra system (MAPLE was used
in the current study) together with a custom-written package for performing the calculations (See
Fitt (1987)) was employed,

When all the added terms are included the eigenvalues are given by the roots of 2 quintic equation
containing 4759 terms, and although some analysis is possible for this case we prefer here to examine
only the effect of the interfacial pressure, virtual mass and turbulence coefficients. Accordingly the
values Cuy = Cuz = Cer = 1 and ¢; = di = dr = Cp = 0 have been used. In this case the
eigenvalues are determined by a quintic equation which contains Cym, Cy and ¢p as parameters,
and depends on R = pifpa, V? = (uy — ua)?/c?, (where ¢ = vp;/p) and a;. For fixed R and
7 (unless otherwise stated, the physically realistic values of 1/5 and 6/5 respectively were used in
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all the calculations reported below) hyperbolicity regions for the equations may be examined by
plotting o; against V2,

First we consider the case when there are no added terms so that Cope = C, = ¢ = 0
For these values it may be shown that the equations are hyperbolic only if ¢y = O or V = 0,
or if ¥2 > (1 + ¢¥/3)® where ¢ = azp1/(a1p2). Each of the four figures 1(a) - 1(d) indicates
the boundary of this region (denoted 1) as a solid line. In this case, just over 32% of the region
D ={(a1,V?) : a1 £1,0 £ V? £ 6} comprises parameter space where the equations are hyperbolic.
Moreover, any flows which start from rest must pass through elliptic regions.of parameter space,
Figute 1(z) shows the hyperbolicity map for the values ¢7 = —1/4 and C,,, = 1/2 (values previously
suggested by diverse authors) and C, = —7/16 {spherical solid particles). The hyperbolicity map is
completely changed (hyperbolic regions indicated by H) but still only 38% is hyperbolic.

Some more general conclusions may be drawn by considering the effects of specific parameters;
whilst no situations have been observed in which the virtual mass term helps the situation, in general
the smaller the value of ¢r, the greater the hyperbolic region. Figure 1(b) shows the case Cypm = 0,
Cy = 0 and ¢ = -3, when 87% of parameter space is hyperbolic. An even better result may be
obtained by the choice Cum = ¢ = 0, €, = —1, when it is possible to show that the equations are
hyperbolic everywhere Figure 1{c}, where €, = —99/100 and the other coefficients are zero, shows
that this is a somewhat singular limit however; here only 73% of parameter space is hyperbolic

Finally, the influence of the density ratio R may be examined Figure 1(d) shows a hyperbolicity
map for the case Cym = 0, C; = ~7/16 and ¢ = —1 so that the particles are spherical, virtual
mass effects are ignored and the turbulent effects are fairly strong. The density ratio in this case
is R = 1/100 (heavy particles} and 56% of parameter space is hyperbolic. For the same values of
Cum, Cs and ¢, but a density ratio of 1/5, 68% of parameter space is hyperbolic,

3. Conclusions

Two phase flows are undoubtedly highly complicated phenomena and any attempt to construct
mathematical models must reflect this complexity. The diversity of possible flow regimes and qual-
itative behaviours makes it unrealistic to expect simple models to be successful, and this manifests
itself in the non - hyperbolicity of the governing equations. The work outlined above provides a
process by which ‘incorrect’ models may be identified and discarded However, even if submodels
and correlations are used which render the equations totally hyperbolic, the hyperbolicity in itself
does not prove that the equations are necessarily correct. As in all highly involved modelling prob-
lems, careful dimensional analysis, comparison with experiment and shrewd physical intuition are
obligatory requirements for successful predictions.
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