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Abstract. The Soderberg electrode is a continuously consumed smelting electrode used in the production
process of materials such as ferroalloys. The material which makes up the electrode is composed of a carbon
“paste” which is solid at room temperature but softens, flows and is finally baked with increasing temperature.
Although the carbon paste is in reality a two-phase mixture, there is much industrial interest in determining its
“effective” viscosity Traditionally this has been accomplished using a variety of laboratery tests which involve
subjecting a paste sample to prescribed loads or displacements and measuring changes in the geometric
properties of the sample The aim of the current study is to predict the effect viscosity of a paste sample by
predicting the “bulging” of a sample Mathematical models are proposed for these procedures and it is shown
that a slow-flow treatment is applicable. Certain sample geometries permit an analytic treatment of the
problem, where exact solutions for the small-time behaviour of the regions of the sample away from its
boundary may be determined. It is further shown that the behaviour of the solution near to the boundaries
may be determined using a boundary layer analysis, and leads to a non-canonical end problem which may be
solved by employing Papkovitch—Fadle eigenfunction expansions, The finite element method is used to derive
numerical solutions which confirm the predictions of the model for the effective viscosity of the sample.
Finally, some numerical solutions are given for more general geometries where analytic solutions are not
available.

1. Introduction

Electric smelting is currently used in a number of countries to produce a variety of
materials such as ferroalloys, silicon metal and calcium carbide. For the industrial process to
operate successfully, large amounts of energy must be transported to the heart of the smelting
furnace where the end product is created in molten form. In the process discussed below, the
energy is provided in the form of substantial electric currents that are passed along a carbon
electrode. The electrode is continuously consumed in the smelting process, moving a distance
of order 1 m per day, and must therefore be replenished. One possibility for replenishment
would be to add pre-formed electrode scgments to the top of the electrode, but a more
practical solution is to produce a continuous carbon electrode immediately above the furnace.
To accomplish this, cylinders of carbon paste are fed into the centre of the cylindrical steel
casing (of diameter 1-2 m) which is heated gradually. Under heating, the paste flows to fill
the whole cvlinder and is finally baked at about 500°C in the region where the current enters
the electrode. Such an electrode is called a Soderberg electrode.
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This paper concerns the problem of determining the effective viscosity of the carbon paste,
which is composed of a mixture of particles and binder. In most applications, the binder is
pitch or tar, and the particies are composed of calcinated anthracite {(coke). The coke
particles may have diameters ranging from less than 125 pm to 15 mm, so that although the
binder may be considered to behave like a Newtonian fluid, the paste mixture exhibits
complicated rheological characteristics. The behaviour of the paste is also highly temperature
dependent. At room temperature the paste is solid, but at 50-80°C it begins to soften.
Thereafter the flowability increases with increasing temperature. This property of the paste
has been measured using a viscometer at temperatures up to 225°C. A further complication is
introduced by the fact that the solid particles are present in the paste in very high
concentrations, experience showing that to achieve a paste with suitable flow characteristics as
well as low resistivity and high strength, the required particle concentration is typically
70-75%. A consequence of this is that particle /particle contact becomes important, and
granular and frictional effects are observed. It is also possible for the paste to segregate, so
that the binder and particles constituents separate and the material is no longer uniform.
Segregation is usually observed along the steel casing close to the point where the current
enters, and can give rise to poor quality electrodes which may subsequently break.

Clearly the description of the flow of the carbon paste within the clectrode requires a
major modelling effort if it is to be well understood and accurately predicted. Rather than
attempt to do this, attention in the past has fixed on producing a paste with an appropriate
effective viscosity (flowability), treating the binder /particles mixture as though it was a single
component viscous fluid, the chosen level of apparent viscosity being based on experience.
The main reason for this approach is that the paste flow in the upper part of the electrode is
so complicated that most existing mathematical models for predicting the motion and
consumption of the Soderberg electrode are based on standard fluid mechanics equations
containing only a single viscosity (see, for example Bergstrom et al. {1989)) Although this
viscosity is highly temperature-dependent, no explicit mention is made of the separate
components of the pitch--particles mixture. Our aim is therefore to examine, both analytically
and numerically, the processes by which the effective viscosity of the paste (at a given,
constant prescribed temperature) may be determined.

We shall consider three sorts of viscosity test that might be applied to a block of carbon
paste, Firstly, a block of paste is heated (normally to about 300°C), placed on a rigid
impermeable solid surface and left to slump under its own weight Thereafter the viscosity is
inferred from the resulting shape of the block. This experiment has come to be known as the
“plasticity” test (a slightly misleading name since no plasticity in the normal sense of the word
is involved, but one which we shall use henceforth in deference to the standard terminology of
the industry) and may take many minutes to complete. Two other somewhat faster forms of
test which are in common use are similar in spirit to the plasticity test, but involve a metal
plate which is applied to the (plane) top surface of the sample The plate is then forced to
move either with a prescribed (often constant) velocity (the “velocity test”) or with a
prescribed force (the “viscometer™). Again, we shall use the terminology as described, but of
course both the latter two tests are viscometers. Mathematically, the only difference between
the plasticity test, the viscometer and the velocity test is the boundary condition that is
applied on the top surface of the test sample. The aim in all three cases is to predict the
“bulging” of an experimental sample and thereby infer the effective viscosity of the material.

2. Mathematical model

To fix our ideas, we consider & two-dimensional block of paste occupying a region D which
is initially rectangular with height A and semi-width L. Rectangular cartesian coordinates
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Fig. 1 Geometry of paste sample.

with unit vectors i, j and k (k pointing out of the paper) are employed, and the top surface
of the sample is denoted by S, the surface in contact with the rigid plane y =0 by Sy, and
the (initially vertical) sides of the sample by S, and S_. (See fig, 1.}

Assuming that the temperature 1s constant and non-dimensionalizing lengths with A, the
fluid velocity ¢ with L, where U, is some representative speed (for example, the speed of the
centre of the top of the sample), the time ¢ with 7, a typical time scale, and the pressure p
and the stress tensor T with pll /h where p is the viscosity to be determined, the
Navier—Stokes equations with body force become, in non-dimensional variables,

Re[St 'q,+ (g V)g| = -Vp+ V% — (Re/Fr)j, V-q=0,

where subscripts denote differentiation and as usual the Reynolds, Froude and Strouhal
numbers are defined by

hU.p Uz TU,
Re = , Fr=—, §t=
5 gh h
Since none of the viscosity tests involve impulsive loadings, we assume that the Strouhal
number is order unity so that U, ~k/T. Taking typical values for the variables of & ~ 1 m,
U, ~ 1 m/h (almost certainly an overestimate, even for the velocity test), p ~ 3 g/cm?®, and a
value for the viscosity of 10° Pa s gives

Re=0(10"%), Fr=0(10"%)
so that to lowest order the non-dimensional equations of motion become
Vp=Vqg—aj, V-g=0, (1)

where o =Re/Fr, and we simply retrieve the slow flow equations with a body force.
Admittedly the order of magnitude variations in the viscosity will mean that under some
circumstances the Reynolds and Froude numbers will not be comparable, but the convective
terms in the Navier-Stokes equations will always vanish to lowest order because of the low
velocities. As far as the boundary conditions are concerned, the sides S, and S_ are
stress-free, there is a standard no-slip condition on Sy, and the top of the sample S is either
stress-free (plasticity test), has given velocity (velocity test) or a given total normal stress with
a horizontal boundary (viscometer),
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As usual, we may take the curl of the momentum equation and identically satisfy the
continuity equation by defining a stream function # such that u=4,, v = —4¢,, so that
satisfies the biharmonic equation in D. When the boundary conditions are expressed in terms
of the stream function the full non-dimensional problem may conveniently be written

Vig=0 ((x.y)€D), #=1,=0 ((x,y)€Sy),

Tr=0 ((x,y)eS, US )

(D/Dt)[x—&(y, )] =0 ((x,¥) =S, US_),

T-r=0 (plasticity test)

¥, =0, ¥,=—5(1) (velocity test) }(x, y) €8S.. (2)
#, =0, —p—2¢,,=vy(t) (viscometer)

Here D /D¢ denotes the standard convective derivative, n is the unit normal to the boundary
and 5(#) and ~(¢) represent a non-dimensionalized velocity and normal stress respectively.
Also, we have denoted the (non-dimensional) equation of the boundary S, by x=£&(y, ).
Time enters into the problem via the standard kinematic boundary condition on the free
surfaces of the sample and the body force term will enter via the pressures which appear in
the boundary conditions, Clearly the problem as posed at present will be too hard to solve
analytically and numerical methods will have to be used. Before describing the numerical

procedure however, we consider some circumstances in which some analytic progress may be
made.

2.1 Corner solutions

Some headway may be made by examining the behaviour in the corners of the block. These
corners fall into four categories depending on the boundary conditions on the two adjoining
sides, For the velocity test and the viscometer these boundary conditions are similar at the top
and bottom. We therefore confine our attention to the plasticity test. If we denote by x and y
the horizontal and vertical coordinates centered at each corner in turn then, ignoring any
possible eigenfunctions, we find the following [ocal behaviour.

(i) At a top corner (where two stress free surfaces meet)

u~—zaxy, v~za(x*+y?), p~—iay.
(ii) Near the line of symmetry at the top,
u~aBxy, v~ f%aﬁ(xzﬁwyz), p~a(—1-28)y
(where B is arbitrary and would have to be determined by matching with the outer solution).
(iii) At a bottom corner (where a stress free surface meets a fixed surface)
u~—3zaxy, v~gay’, p~—3ay.
{(iv) Near the bottom line of symmetry
u~adxy, v~ —1ady?, p~a(-1-38)y,

where § is arbitrary.

Interestingly, in each case these local solutions produce no outward motion of the free
surfaces and hence no bulging. To produce the observed bulging it is necessary to recognize
that the flow is dominated by an eigensolution- A local analysis indicates that, by including
eigensolutions, bulging may occur near the bottom corners but not at the top corners With or
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Fig 2 Quarter plane eigenproblems

without cigensolutions the bottom cornerpoint does not move. In the absence of surface
roughness this is due to the no slip boundary conditions applied at y = 0, and does not occur if
they are removed (see for example the analogous problem for inviscid flow which was studied
by Penney and Thornhill (1952))

To examine the Iocal behaviour of the eigensolutions near the corners we consider the two
quarter space problems shown in fig. (2) and seek solutions of the form

g =r*[ A cos A8 + B sin A8 + C cos(A — 2)8 + D sin{ A —2)8].

For the bottom corner it is found that A =1 (so that o sin @ and thus u is zero along
¢=w/2), or

tan®(wA/2) = (A — 1)°/A(2—A),

which has precisely two real solutions A = 0.405, which we reject since it leads to a singularity
inuat r=0, and A = 1.595. Therefore an cigensolution with a velocity along 8 = w/2 of

el /or ~ 06

is possible. This allows bulging and suggests a free boundary which grows like %% The
equivalent condition near the top corner is

tan?(wA/2) = M(A —2) /(A — 1)%,
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which only possesses real solutions A =0, 1, 2. All of these values again give u =0 on 0 =« /2
and therefore do not permit bulging

3. Geometries which admit an analytical solution

The corner solutions discussed above provide qualitative information concerning the
“bulging” of the sample, but inevitably contain constants that must be determined from
matching with an unknown solution, and so do not allow predictions of the viscosity to be
made. In this section we consider a sample shape which simplifies the problem to such an
extent that estimates for the viscosity may be directly determined

31 A tall, thin sample

We analyze first the case of a tall, thin paste block where L /h = ¢ << 1. We shall consider
the region x > 0 and impose symmetry conditions on x = 0. Having made the further obvious
scalings x =eX, u=eU and & = en, the scaled non-dimensional problem (1) becomes

_ 2 2. _ 2 2 _
px=UxxteU,, €p,=vyx+ev,, —€a, Up+u,=0.

If we now write U = Uy + €U, + €*U, + - -+ and use similar expansions for v, p and 7, then it
is easy to show that solutions which satisfy the differential equations and the symmetry
conditions U =, =0 on X =0 are given up to O(c?) by

U= —Xu,, —EXUly+€2[—%X3(*200yyy+g0yy) —qu)],
v=vg(y, ) tev (v, 1) +62[%X2(g0y+a — ZUUW) +q(y, I)],
p= (_Uﬂy +g0) +E(—Uly +gl) + Ez[%XZ(UUyyy“gOyy) +g2(y) t)]:

where the functions g(y, ), g(¥, t), g,(y, ) and g,(y, {) remain to be determined. Imposing
the free surface kinematic boundary condition to leading order gives an equation for 7, and
vy which is

Mo+ (Mve), =0,

the dot representing a time derivative. Clearly another equation for i, and v, is required and
this can be derived by imposing the stress-free conditions on the scaled boundary X = n{y, t).
Setting the x-component of T - # equal t0 zero gives

—8o—Uoy= —8 — Vv, =0,

whilst the order €2 contribution relates the functions ¢, g, and g;. The y-component yields
nothing until we reach the order ¢? terms, whereupon we find that

4(mglay) y = Mo

The solution of the leading order problem may therefore be written
v=vp(y, t) +ev(y, 1)+ 52[%)(2(@ —3vg,, ) +a(y, t)],
U= —Xv,, —eXv,, + EzHstUy” - qu] )
p=—20v,, — 2euy, +52[X2L’0yyy +g2] ,

where 95+ (m900), =0, 4(m40,), = ame- (3)
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Some thought needs to be given to the boundary conditions of the equations for , and v, In
general we would expect to be able to specify two boundary conditions for v, and an initial
condition for n; when solving the leading order problem. Therefore it will not be possible to
force the leading order solution to satisfy two no-slip conditions on v =0 and two stress or
velocity conditions on y = s(¢). There will be locations near to the top and /or the bottom of
the sample where inner expansions will be required to determine the correct behaviour. We
therefore regard the leading order problem formulated above as an “outer” problem.

Again, there are the usual three viscosity tests which we could consider to give different
boundary conditions on the top surface. We must choose two out of four possible conditions
for v, to satisfy. Since we would like the outer problem to reflect properties of both the top
and bottom of the sample, we choose to satisfy the condition v5=0 on y=0 and one
condition on y = s(¢). It is worth mentioning that for the velocity test it is possible to specify
two conditions on y = s(¢) and none on the base of the sample, but evidently this is physically
the wrong approach.

A general comment concerning the equations for 5, and v, is in order here: a standard
characteristic analysis shows that the characteristics of the system are given by

di/dy=0, 0, and 1/u,.

The fact that there is only one non-trivial characteristic arises from the absence of any time
derivatives of v,. Consequentially, it must be noted that if we wish to prescribe the vertical
velocity v, along any curve y =s(¢), then the consistency condition along the non-trivial
characteristic demands that v = 3. So a prescription of the vertical velocity at the top of the
sample amounts to characteristic data, but of a consistent form.

Equations (3) may be solved numerically in a variety of efficient ways; one atiractive
possibility involves a change of the independent variable y of the form ¥ =y /s(¢) which has
the effect of conveniently fixing the moving boundary. Since the full equations will be solved
numerically in section 4 however, we do not pursue this further.

Before further analysing the individual experiments, it is worth mentioning that, though we
have proceeded using asymptotic analysis, the second eqs. (3} may also be arrived at using a
simple physical argument which is normally referred to as the “Young experiment”. The
components ¢, and ¢, of the stress tensor are given by 7,, = —p + 2u, and t,y=—p+20,
Near the stress-free side of the sample where #,, =0 and u, + v, =0 this yields ¢, =4u,.
The second of egs. (3) therefore amounts to an assertion that the rate of change of the total
force nt,, exerted by this stress over the surface % must exactly balance the weight of a layer.

3 1.1 Velocity fest

Probably the simplest case to analyze further is the velocity test where v is specified on the
(flat) top surface of the sample. Although even the leading order problem is hard to solve, we
can analyze the solution for small times. Assuming that n4(y, ) =1and v = -V, on y=1
(where Vr is a non-dimensional velocity), we expand v, and 7, in powers of ¢ and find that
the solution which satisfies v, =0 on y =0 is given by

My =1+ 5£(8V — 2ay + a) + O(1?2),
vo= ey’ —y(Vr + ta) + gat[ay(2ay? — 3ay + a — 24Vpy + 24V1)] + O(¢?)

This solution therefore distinguishes between three values of the speed ¥ of the top plate
(see figs. 3a, 3b and 3c).

For V> a /8, the outer problem predicts that both the top and the bottom of the sample
will “bulge” as top plate is pushed down. The free boundary is linear, and the horizontal
velocity on the top and bottom of the sampie is proportional to X. For V. = & /8, the imposed
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Fig. 3 Development of sample semi-width shapes for various values of V- (velocity test)

velocity is just enough to preserve the condition that m,=1 at y =1, so that the horizontal
velocity on y = 1 is zero. Of course, there is still a non-zero horizontal slip on y = 0. In the
case V. <a/8, the imposed velocity is not enough to overcome the “slumping” due to gravity.
Thus the top of the sample moves towards the y-axis and the bottom away from it. This
behaviour is consistent with the early stages of the formation of a liquid drop under gravity,
for example.

Near v=0 and y=s(r) the outer solution is not valid and boundary layers must be
introduced (see section 3.3). The outer solution may nevertheless be used to estimate the
effective viscosity from measurements of the maximum “bulge” in the sample. We find that

7o =1+1(Vy+ za) +0(1?)
at y=0, and re-dimensionalizing reveals that for a sample of height %, semi-width L and

density p where the top plate moves with speed U,, if the maximum semi-width of the sample
at any time is BL, then this is related to the effective viscosity by

w="hpgt/8[h(B - 1) - Uzt].

3 1.2. Viscometer

In the case of the viscometer, we must satisfy the boundary conditions vy==0on y =0 and
—po+ 20g, =t} on y=s(s). The shear stress and the position of the boundary are
unknown. For a constant load y(t) = —y say (where y is non-dimensional), we may again
examine the small-time behaviour of the solution, retrieving

=1+ 3t{y —ay +a) + O(r%),
vo=gay’— 1y(y +a)+ %t[ay(ay2 —3ay+3a—3yy+ 6y)] +0(£%).

Here again the “bulge” is linear in y, and for y > 0 the picture always resembles that of fig.
3a The only circumstances under which there is any form of “necking” of the sample occur
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when v is negative so that the top surface of the sample is actually being forced upwards. For
this experiment the viscosity can again be estimated by measuring the maximum “bulge” as in
the velocity test. The corresponding (dimensional} result is that for a maximum sample
semi-width BL and a (dimensional) load I,

w=t(T+hpg) /4(B—1).
For the viscometer, the downward speed of the top of the sample is also unknown, and this
provides us with an additional means of estimating the viscosity for short times, If we assume

that m,=1-+ O(#), then we may solve egs. (3) for small times and impose the conditions
vp=0o0n y=0and —p,+20,,= —y on y =s(¢) to retrieve

vo=gay’ +y[— 4y~ fas(t)]

Now using the fact that v, = §(¢} on y = s(¢) we find that
§=—tas®—tys

and hence
s(t)y=2y e_”‘fﬂ/(a +2y—« 6_7"/4).

Re-dimensionalizing, we find that the effective viscosity is given for small times in terms of
the position of the top boundary by

B It ht(L+hpg/2)
4 log[(2hI + hpgs)/s(hpg +2T)] - Hh—s)

M

3.1.3. Plasticity test

The plasticity test is complicated by the fact that with no top plate constraining the sample,
there is no lenger any reason why the top surface should remain flat. Accordingly, we write
u=1(x, t) to specify the top surface of the sample where 7 is non-dimensional. Scaling x
and y with e and imposing the stress-free conditions on the top surface reveals that to lowest
order we must satisfy

Tx{ Po— 2Upx) =0, _TX(UZX"' on) —Pot 2”0y =0.

Evidently, the first of these conditions is satisfied automaticaily The normal stress condition
becomes

dvg, + Xry(—a+4v,,,) =0,

and a small time expansion shows that as before
ne=1+¢{-C— iva) + 55at*(8Cy + ay® — 4D) + O(r%),
vg=gay? + Cy + mty(96C? + 12Cay + a’y* + 24aD) + O(¢7),

where C and D are constants. Imposing the boundary condition on the top surface y =1+
t7(X)+ O(¢?) gives that to lowest order 4C+ a =0, so determining C, and the order t
condition determines 7,(X) as

1{(X)=-D—za

Although D may be determined by going to higher orders, we have the information which we
need: for small times the top surface remains parallel to the X-axis to leading order
Assuming once again that the maximum “bulge™ is that predicted by the outer solution, we
find that the effective viscosity for a maximum bulge BL is approximated by

w=hpgt/4(B—1).
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Using the result that in the plasticity test the top surface remains flat to lowest order, we may
also estimate the effective viscosity as in the case of the viscometer by examining the motion
of the top boundary. Using the result for the viscometer with y = 0, we find that

s(1)=8/(8+at), §(1)=—8a/(8+at)’
Re-dimensionalizing reveals that
uo=shpgt/8(h—s5).

Clearly if we wished to determine the viscosity of the sample via the initial speed of the top
surface, then this could also be accomplished, though the formula is somewhat messy.

3 2 The outer problem for later times

It is worth making some comments on the solution to the leading order problem for the
tall, thin sample at later times. In the case of the velocity test, a search for similarity solutions
may be made by seeking stretching transformations to the problem

i 1

T"0+ (TIUUO)Y=0’ (nDUOy)yzza'n(]:

vp=0 at y=0, py=5(¢) at y=s(t).
We find that the problem may be rendered invariant if we set v, = AVy, 1, =Ny, y =AY,
t=A"Y2T and s = A8, which gives rise to a similarity variable ¢ =y# and a velocity v, of
the form v, =1"2g(¢). Of course for consistency s(¢) must be a function of ¢ alone, which
means that we are forced to take s(¢Y=A4/t where A is a constant The free surface
condition then requires that g{A4)= —A, giving a boundary condition for g. The form of s{(z)
represents the limiting case where the sample starts off with infinite height and is compressed

by the top plate to zero height in infinite time. If we now assume that n, = k({), then the
similarity equations and boundary conditions are

[h'+{gh) =0, (g'n) =1ah,
B0y =1, (0)=0, g(4)=-A.

Although it is possible to eliminate A and retrieve the equation
g" =g /({+8) =1a,

a numerical solution is required in general The only case where any progress can be made is
when gravity is negligible, so that & << 1 and p = A%pg/U.. In this case the equations are the
same as those considered by Dewynne et al. (1989), who pointed out that they may be solved
for arbitrary 5(¢) by means of a hodograph transformation. We have for ¢ =0

Nty = C(1)
Defining a scaled time T by

L
T={C(p)dp
0
and writing v, = C(2)V, the equations become

Nort+ VOTJ‘Dy = -1, %Voy =1 (’flo()’a 0) = 7}03(3’)’ VU(O, T) = 0),

Eliminating the variable ¥, and employing a hodograph transformation to change from
Mo =n¢(¥, T) to y =y(n,. T) gives the equation

Yua = nU(yTJoT_yTJu’lu)’
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which is a first-order quasi-linear equation for Yoo Assuming that the initial condition
Mo =15{¥) at T =¢ =0 may be solved to give say y = yo{n,) at T=0, and setting (y,;)
z,,(n,), we find that n, is given implicitly by

Moy = Mo/ (e + T)zg(no+ 7).

In principle therefore the problem is solved for arbitrary s(¢) and n,{y) since the relation-
ships

e

dT/dt:S(t)/VU(S(tL [)= 770(0’ T) + T:Tl'l]i(o)

completely determine the solution. In practice of course all the relationships are implicit so
the solution is somewhat awkward to handle The simplest case is that of an initially
straight-sided sample so that n,, = 1, whence

o) =s(0) /s(1), wvo=[5(2)/s(t)]v,

so that the sample always assumes a rectangular shape and is slowly squashed to zero height.
This solution is of little practical use however as it gives no information about the viscosity —
evidently the force required to push the top plate down with a given velocity would vary
according to the viscosity If however we prescribe the normal stress — (¢} on the top plate,
then the relevant solution is

no(r)=exp(fo‘%v(§) df), vo= —37(2)y, s(r)=exp(— jo‘%ﬂf)-dg]

and again the viscosity may be estimated by either the bulge in the sample or the speed of the
top plate.

3.3. The boundary layer near the base of the sample

It was noted above that near the base or top of the sample the outer problem is not valid
and a rescaling is required to allow the full boundary conditions to be satisfied, Although the
outer solution derived in section 3.1. will be sufficient to estimate the viscosity, completeness
demands that the boundary layer structure should be analyzed to confirm that the matching
problem can at least be solved in principle

Considering first the base of the sample, it is easily shown that if in addition to the scalings
already chosen for U and X we introduce new variables Y and V where y =€"Y, v =¢€"V,
then only a choice of » =1 will not either lead back to the outer problem, or lead to a

problem where the full no-slip condition cannot be satisfied. The choice of n =1 leaves egs
(D as

Px=Ux+ Uy, py=Vyxt+Vyy—ea, UptVy=0, (4)

with boundary conditions U=V =0 on ¥ =0, symmetry on X = 0, stress-free on X = (¥, )
and satisfying matching conditions with the outer solution as Y — o For brevity we only
consider the region near to the base of the sample, but the boundary layer near to the top of
the sample may be investigated via similar techniques. Evidently (4) is the full Stokes flow
problem and moreover for arbitrary times the free boundary is in motion, so that in general
an analytic solution will not be possible and we will have to resort to numerical methods.
Again, however the problem may be solved for small times,

3 3.1 The matching problem for small times
Concentrating for the present moment on the details of the velocity test (the other two
cases may be analyzed similarly), we may exploit the fact that for small times the free
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¢—0

- — Vi =0 Pyy —®xx =90
&=oxx =0 Pxxx +30yyx =0

$=9, Py =KX

Fig. 4 Matching problem near base of sample

boundary S, of the sample remains vertical, and the outer velocity is known in the form
Ug= —X[éacy2 +Ky] +0O(1),
where K denotes the constant —JV;— /8. Introducing a stream function ¥ which has also
been scaled with ¢, the matching problem for small times becomes
V=0, 0=<X=<1, 0=Y<o,
with boundary conditions
T=",.,=0 on X=0,
Y=V¥y,=0 on Y=0,
Yy = Vv =Yyux+3¥yyTea=0 on X=1
and matching condition
V= —X(%cxeYz-f-KY) as Y —oo.

Subtracting out the behaviour at Y= by setting ¥ = —KY¥YX + & and considering the
problem only to lowest order in ¢, we finally require to solve the problem shown in fig. 4.

This problem for the biharmonic equation may be solved by separation of variables.
Assuming solutions of the form

P=0(X)0,(Y),
it may easily be shown that the conditions at ¥ = require @, and &, to be chosen in the
form

O(X)=AX sin AX+BX cos A X+ Csin AX+D cos AX,

0,(Y) = exp(—AY)

and we must now impose the boundary conditions. The symmetry conditions force 4 =D =0,
whilst for non-zero eigenvalues A the conditions on the free surface lead to

Blcos A+ (sin A)/A] +Csin A=0, BsinA—Ccos A=0

Equating the determinant of the coefficient matrix to zero in the usual way gives the
eigenvalue equation
A+sin A cos A =0,

which identifies the A, as the Papkovitch—Fadle eigenvalues, first identified by Papkovitch
(1940) and Fadle (1940), It is clear that a given eigenvalue A, immediately gives rise to three
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Table 1

First five Papkovitch—Fadle eigenvalues.

n Re(A,) Im(A,)
1 2.10620 112536
2 535627 1.55157
3 8.53668 177554
4 11.69918 192940
5 14.85406 2.04685

others, namely —A,, /_\n and —X,,, so that there is one family of (non-zero) eigenvalues in
each quadrant of the complex plane. We are interested only in those eigenvaiunes with
Re(A,) > 0, and this doubly infinite family may easily be determined by simple Newton—
Raphson iteration. For example, the first five such eigenvalues are given {to 5 d.p.) in table 1.

The asymptotic distribution of the eigenvalues is easily determined (see, for example
Spence (1982)} and is given by

Ay = (k- 3)w+ 3i log(4kw) + O(log k/k)
If we now write the eigenfunction expansion for @ as

(X, Y)= Y. c,d,(X) e ™Y
be]
where the eigenfunctions have been defined by

(X)) = (4, cos® An)_l(X cos A, cos A, X +sin A, sin A,X)

(the scaling factor has been included for convenience), then it only remains to determine the
coefficients ¢, so that

0=2c,¢.(X), KX=3 —Acd(X).

The fact that the eigenvalues are complex allows us the freedom to satisfy these conditions for
the ¢, since the c, themselves will be complex. The task is not quite as simple as it may at
first appear however, because the eigenfunctions ¢,(X) are not mutually orthogonal. It turns
out that problems of this sort for the biharmonic equation fall naturally into two classes,
which have come to be known as canonical and non-canonical end problems. Some explana-
tion of these two classes of problems is apposite.

For a moment, let us consider some slightly more general problems than the one which was
posed above. Classically, end problems for the biharmonic strip have normally appeared in
two guises: problems for slow viscous flow in a semi-infinite trench (see, for example Liu and
Joseph (1977)) where the biharmonic function ¥ represents a stream function; and problems
in elasticity where the region in question is considered to be a semi-infinite linear elastic strip
{see, for example Smith (1952) or Horvay (1957)) and the biharmonic function is an Airy stress
function. In both these form of the problem, the conditions are normally taken to be no slip
(Stokes flow) or no displacement (elasticity) on the long sides of the strip, rather than the
stress-free conditions which pertain in our problem The conditions on y =0 are typically
composed of prescribing some combination of stresses and accelerations (Stokes flow) and
some combination of stresses and displacements (elasticity), rather than the velocity condi-
tions which we wish to impose. Using the convenient notation of Spence (1978), we define the
functions f(X), f,(X), f5(X) and f(X) by

F=(A(X), £,(X), f(X), f( X)) = (Pxy, Pxx, Qs P)y=o,
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where P=V?® and Q is the harmonic conjugate of P. Then we may express boundary
conditions at ¥ =0 for all the problems discussed above in terms of combinations of elements
of f. Using the eigenfunction expansion, we may also define functions ¢,,, (k= 1, 4) by

fu(X) = Y, b, (X)),

so that
¢,:(X) (A, sin A, X —cos® A, cos A, X)/cos A,
b X) | _ [—/\n cos A, X + (sin2 A, 2) sint )LRX]/COS A,
b, X) —2sin A, X/cos A,
i X) 2cos A, X/cos A,

Consider now for definiteness the problem where the prescribed functions on Y =0 are f,(X)
and fy{X). Then although in general we cannot find functions which are orthogonal to ¢, if
we can find functions B,,,(X) and B,,;(X) such that

<Bm(l,3)! ¢n(1,3)> =B

where we have defined the inner product by
1
<a’(p,q)’ b(p,q)> =_/; (apbp + aqbq) dX,
the coefficients ¢, will be determined completely via the guadrature

Cop = <f(1,3)7 Bm(1,3)>.‘

For the case of f, and f; prescribed, this may be accomplished, as it turns out that 8, is a
multiple of ¢, and B8,, is a multiple of ¢,, Such functions B, are usually termed
biorthogonal functions. The crucial point however is that such biorthogonal functions do not
always exist In fact it is easy to show that suitable biorthogonal functions orly exist in the
cases when f; and f; are prescribed, and when f, and f, are prescribed Problems with this
data are therefore termed canonmical, and their solutions may be written down in terms of
quadratures. There are also results available on completeness and convergence (see, for
example Gregory (1980)). Problems with any other data prescribed are termed non-cancnical,
and are therefore much harder to solve.

Returning to the specific problem which we wish to solve, the data prescribed is @ and @
This amounts to f, and f, in the notation introduced above, so that the problem is a
non-canonical one Although the coefficients ¢, may not be determined explicitly, it is
possible to solve the problem using collocation. The easiest way to do this is to write

Bm1=A¢ml +B¢m2= BmZz Cd)m3+D¢M47

where A, B, C and D are constants. Forming an inner product with the prescribed data then
gives

Cm = ZHmncn + dﬂ’
"

where
d, = <Bm(1,2)9 f(1,2)>a

Hmn - Smn a fol(rgmld)ﬂl + ‘Bmqu'ﬂ) dX.

This gives rise to an infinite set of linear equations for the ¢,, which are to be solved by



A.D. Fitt, I M Aitchison / Effective viscosity of electrode carbon paste 51

truncation. The introduction of the constants A, B, C and D was first used by Spence (1978)
and represents an improvement on all previous collocation methods for this problem as the
choice A=-1,C=1,B=1/2and D= —1/2 (giving rise to “optimal weighting functions™)
renders the system of equations diagonally dominant, which is the crucial property ensuring
that as # — < the solution to the truncated » X n system of equations tends to the exact
solution of the equations (see, for example Kantorovitch and Krylov (1958)). It is also possible
to derive asymptotic estimates for the coefficients.

We therefore conclude that the matching problem at the bottom of the sample (and, with
some insignificant changes in boundary conditions the top of the sample) is well-defined, at
least for small times, and in principle may be solved via collocation. The initial movement of
the free boundary of the sample may also be calculated, giving

np=1+1m(Y) +0O(1?),
where

TII(Y) = Ecn SCCZAn[l - exp( _ARY)] 3

so that, as expected, the boundary exhibits a “bulge” as we move away from Y = 0, subject of
course to the usual condition on «

It is worth remarking that the eigenfunction expansion could be used to determine the
{unknown) coefficients for the corner solution eigenfunctions discussed in section 2.1. In
practice though this would lead to an infinite system of linear equations where the matrix is
full and not diagonally dominated The conclusion here is that although the corner solutions
give interesting qualitative results concerning the nature of the “bulging”, they do not provide
useful quantitative results; for these we might as well solve the full boundary layer problem as
indicated above

4, Numerical methods for the full problem

In the previous section we have seen that the full problem involves solving the time-inde-
pendent slow flow equations, and then advancing the position of the free surface using a
kinematic condition.

We will solve the problem numerically using a combination of Lagrangian and Eulerian
methodologies. The solution will be calculated at a series of discrete points in time. At the
beginning of each time step it is assumed that the current position of the free surface, and
hence the shape of the flow region, is known. An Eulerian formulation of the slow flow
equations will be solved using the finite element method. This will yield values for the velocity
components at a set of points inside and on the boundary of the flow region. These points will
then be moved as in a Lagrangian formulation to give the position of the flow region at the
next time level,

A similar combined Eulerian-Lagrangian technique which used a boundary element
method to calculate the solution to the slow flow equations on the boundary of the flow
region would also be suitable. For the particular case of Stokes flow with constant viscosity
the boundary element method is probably more efficient than a finite element method, but it
does not vield information about the flow in the interior of the region nor would it cope so
easily with an extended model in which the viscosity is not constant.

4.1, Finite element solution of the slow flow equations

The slow flow eqguations described earlier may be solved for arbitrary initial shapes using
the finite element method. This is most conveniently used when the equations of motion are
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written in terms of the primitive variables p, # and v, where the velocity g has been written
g =ui +yj. To allow the free surface stress conditions to be applied, the equations are best
taken in the form

o,/ 0x +dt,, /0y =0, o, /0x+d,,/0y=a, (5)
du/dx + du /3y =0, (6)
where the stress components are defined by

t.,=—-p+2dujox, t  =t, =0du/dy tdv/ox,

Xy

{,,=—p+23p/dy.

¥y

The x and y components of the surface traction across a free surface with outward normal n
are

T.=t, dx/on+t,, 0y/on, T,=1, 0x/3n+t, dy/on.

All the paste samples considered in this study are symmetrical about the line x = 0 Therefore
for computational purposes we will consider only the right hand half of the flow region and
introduce a new boundary S, (the axis of symmetry) on x = 0. The boundary conditions in this
formulation are written as

u=v=9_0 ((x,y)€8g), T,=T,=0 ((x,y)=8,),
u=T,=0 ((x,y)E8,)

and, for (x, y) €S,
T,=1T7,=0 (plasticity test),

u=0, v=3(1) (velocity test),

u=0, T,=vy(t) (viscometer test).

The flow region D is divided into triangular elements with corner and midside nodes.
Foellowing normal practice the velocity components will be approximated by a polynomial on
each element which is one degree higher than that used for the pressure. Here a linear
approximation for the pressure is used (using the corner nodes only) and gquadratic approxi-
mations are used for # and v (using all the nodes). Specifically, we let

N

N M
u=i= Zui¢i(x= y), v=i= Zvid)i(x’ y), p=p= Epilffi(xs v}
i=1

i=1 i=1

where ¢{x, ¥),i=1,..., Nand §(x, ¥),i=1, .., M are given quadratic and linear basis
tunctions respectively, and u;, v, i=1,..., Nand p,, i=1,..., M are nodal values for u, v
and p.

The functions i, § and f are chosen to satisfy the the weak form of eqs. (5), (6} as Tollows*

d d
”D(_Q(E”)_E(E”))qb" dxdy=0, i=1,..., N, (7)

o 8

[jD(a— () - 5(fyy))qb,. dxdy=0, i=1,..., N, (8)

ffp(_x-l-—)"bi dxdy=0, i=1,.., M. ®)
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Note that if a particular i, or v, is given as a boundary condition, then the corresponding
equation is deleted from the set (7) or (8) above.

Applying the divergence theorem to (7) and (8) above gives

jf(”a +tx),ad))dxdy qub,dS 0, i=1,., N, (10)
ffD a¢i+fyx% ”aj)dxdy qua d$=0, i=1,.., N, (11)

respectively, where S is the complete boundary of the region D.

The surface integral makes the imposition of the boundary conditions very straightforward.
Consider the boundary conditions for eq. (10) at a particular node i, on the boundary S.
Either u, is given as a boundary condition (on Sy, S, and possibly S;), in which case the
equation is deleted from the set, or T, =0 and so the surface integral is zero. A similar
argument applies to eq. (11), except for the case of the viscometer test, when the surface
integral has a non-zero but prescribed value for points on S,

Substituting for

== EPJ!’ +22M 3, /0x,
i=1 i=1

e =t,=

T [\12

(u A, /0y +v; d¢;/0x),

ryy= - Zpi¢’i+2 E Us a‘ibi/ay

i=1 i=1

into egs. (9), (10} and (11) gives (2N + M) linear algebraic equations for the nodal values «;,
v,i=1,..., Nand p;, i=1,.

4.2. Advancing through time

In the previous section the time variable was not explicitly used, but by applying the ideas
of that section at a particular time t we solve the following problem:

Given D(z), the flow region at time ¢, calculate u, v and p as functions of x and y, but
also implicitly as functions of . We now use the Lagrangian equations

dx/dt=u, dy/dt=v,

to advance the position of points in D(¢) Specifically we take each corner node of the

triangularisation of the previous section and advance using explicit time differencing as
follows

x,(t+88)=x,(¢) +u,8z, yi(t+5)=y,(2) +0v,8z.

These new nodal positions define the region D{r+ &¢), and the whole process may be
repeated.

Evidently it is not essential to apply the Lagrangian equations of motion to all the internal
nodes of D. The free surface could be tracked using the boundary nodes only, and then the
new area could be re-triangulated. However much of the work involved in applying the finite
element method to slow flow equations at each time step involves “house-keeping” operations
such as the building or maintenance of lists of element/node connections. Using the
technique described here, where all the corner nodes are moved at each time step, maintains
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the topology of the element layout from one step to the next and so reduces the finite element
overheads.

The mid-side nodes are not updated directly, since this could lead to the creation of
triangles with curved sides, but this does not increase the overheads since the topology is
determined by corner nodes.

5. Numerical results

The numerical method described above was used to give predictions of the shape of a paste
sample undergoing the velocity, plasticity or viscometer tests. The cases considered included
both samples where the aspect ratio was chosen so that the analysis of section 3 applied, and
order one aspect ratios where the theory is not valid

In all of the calculations reported below the paste sample had a viscosity of u, = 10% Pas
and a density of 3000 kg/m’. The gravitational constant g was taken as 9.8 m/s%, and the
velocity scale was 1 m/h,

The accuracy of the numerical solution of the mathematical model is controlled by the size
of the elements and the size of the time step. There is a further constraint on the size of the
time step for any given element size to maintain numerical stability for the explicit time-step-
ping. Calculations were performed for a variety of space and time steps and different
calculated values of the key output variables, namely the maximum bulge and the sample
height, were compared Using a simple test of consistency it was found that the use of 100
elements (giving 231 nodes and 528 variables) gave an error of order 10™* in these variables.
The appropriate value of the time step depends on the problem being solved, since the
imposition of different boundary conditions gives a different time scale to the problem. Using
the same consistency test it was found that time increments of 0.02, 0.2 and 0.07 h were
suitable for the velocity, plasticity and viscometer tests respectively, The results presented
below use these values.

It is clear from the graphical results that a smaller element size would have improved the
representation of the free surface. However it was not felt appropriate to solve the mathemat-
ical equations to a high degree of accuracy, when they represent a simplified model of the real
physical situation.

In each of figures 5, 6 and 7 the paste sample had an initial height of 1 m. Figure 5 shows
results of the velocity (; = 1), plasticity and viscometer test (y = 1) respectively for the case
where the half-width of the base of the sample was (.5 m. The theory of section 3 predicts the
following values of the viscosity of the paste sample shown in table 2. (In table 2, » denotes
the number of time increments which have taken place, whilst VE, PB, Ps, VIB and VIs each

Table 2

Numerical results corresponding to fig. 3

n VE PB Ps VIB Vis
1 0.4357 1 6569 11697 1.2992 11985
2 0.4019 16653 11703 1.3006 12023
3 13726 16740 11708 1.3023 12059
4 0347 1.6831 11711 13044 12095
5 0.3248 1.6927 11714 13069 12131
6 0.3051 17029 11717 13098 12168
7 0.2878 17136 11721 13131 12208
8 0.2725 17251 11727 13171 12251
g 0.2589 17375 11735 13216 12297

10 0.2468 17509 11747 13268 12348
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Table 3

Numerical results corresponding to fig, 6.

n VE PB Ps VIB Vis
1 (1.8304 11852 10283 1.0914 10277
2 0.7258 11867 1.0352 1.0902 1.0363
3 0.6416 11886 10417 1.0889 10048
4 0.5724 11908 1.0479 1.0876 1.0531
5 (0.5145 11934 1.0537 1.0861 1.0611
6 0.4653 1.1964 1.0591 10846 1.0689
7 04232 11999 10642 10831 1.0765
8 0.3867 12024 1.0689 10815 1.0839
9 0.3547 11998 1.0733 10800 10610

10 (1.3266 1.1973 10773 1.0785 1.0979

denote the ratio g /pp where p is the theoretically predicted viscosity from respectively the
velocity test, the plasticity test where the maximum bulge is measured, the plasticity test
where the sample height is measured, the viscometer test where the maximum bulge is
measured and the viscometer test where the sample height is measured.)

Since e is effectively unity in this case, the theory of section 3 is not valid and we expect the
results to be poor. Nevertheless, the theoretical values of the viscosity are certainly the correct
order of magnitude,

In fig. 6 the geometry of the paste sample is altered so that the base half-width is 0.1 m. A
sreater degree of bulging is apparent near to the base of the sample. The theoretical

VELOCITY TEST PLASTICITY TEST VISCOMETER

7 ¥ ¥

0.8 08 08
06k 96F 06
0.4} 04t 04
0.2F °2ZF 0?2
T v oo % o o oom 60F % oom o oo0m *

Fig. 7 Numerical results for paste sample of small aspect ratio.
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Table 4

Numerical results corresponding to fig, 7

n VE PB Ps VIB Vis
1 0.9558 11693 1.0089 1.0901 1.0139
2 0.8287 11659 1.0160 1.0905 1.0231
3 07279 11624 10228 1.0908 1.0320
4 0.6460 11591 1.0293 1.0911 1.0409
3 0.5782 11559 1.0357 1.0913 1.0496
6 0.5211 11529 1.0418 1.0913 10581
7 (4723 1.1501 1.0476 1.0912 10666
8 (0.4301 11476 1.0533 10911 10749
9 0.3933 11453 1.0587 10907 1.0831

10 0.3609 11434 1.0640 1.0896 10911

predictions of the viscosity shown in table 3 indicate that for the plasticity and viscometer
tests acceptable accuracy is produced; when the height of the sample is measured in the
plasticity test, the error is less than 5% during the first four time intervals.

In fig. 7 (see also table 4} the half-width of the sample has been reduced to .05 m, but all
other parameters are the same as in fig. 6. As expected, there is an improvement in the
results. Bearing in mind the fact that the effective viscosity of paste samples may change over
orders of magnitude as the temperature changes, it is clear from the results below that the
theory is casily sufficiently accurate to provide a powerful means of producing useful
temperature /viscosity relationships. The results also suggest other useful general guidelines

0.8

0B}

.21

0 002 004 o 08

Tig. 8. Numerical results for velocity test showing “necking” of sample
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for the experimentalist; the plasticity and viscometer tests are to be preferred over the velocity
test, and the height of the sample should be used rather than the maximum bulge.

Finally, fig. 8 shows the particular case where the velocity test was used, but the velocity of
the top of the sample was chosen so that V. <a /8. The initial height of the block was 4 m,
the base half-width was 0.2 m, and the velocity of the top of the sample was 1 m/h. This gave
a value of & equal to 16.9344. The behaviour predicted by the theory of section 3 is clearly
illustrated; the sample “necks” whilst spreading out rapidly near to ifs base.

6. Conclusions

The problem of determining the apparent viscosity of a block of carbon paste used in an
important industrial process has been attacked using both analytical and numerical methods.
The structure of the flow has been determined using matched asymptotic expansions, and
some simple exact solutions have been given for a variety of cases. In these cases, a
comparison between the theory and a direct numerical solution exhibited good agreement. In
general however the problem must be solved numerically, and the method which has been
developed is able to accomplish this efficiently and accurately Only the two-dimensional case
has been considered, but by making some fairly trivial changes to the analysis and numerics,
the axisymmetric case could also be considered.
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