Symbolic algebra systems in teaching
and research

A. D. Fitt

Mathematics Group,
Royal Military College of Science,
Shrivenham, Wiltshire, UK

Abstract Recent years have seen great advances in the development of Symbolic
Algebra Systerns (SAS). An SAS is a tool which allows symbolic calculations to
be performed using a computer, and may handle anything from simple
differentiation to complex nonlinear differential equations. A number of different
systems are now available, including REDUCE, MAPLE, MACSYMA,
muMATH, SMP and Scratchpad. Using MAPLE as our chosen SAS, illustrations
will be given of the power of such tools We also consider the place of an SAS in
modern teaching and research Although on a simple level an SAS may serve
only to save time and ensure accuracy, more specialized applications show that it
may now be feasible to carry out calculations which were not possible before such
systems were available In this respect an SAS may be a major coniribution to
research. Some comments are also made concerning the limitations and {aults of
MAPLE, and possible future developments. ‘

Key words: Symbolic algebra, Software development, LISP environment.

1. Totroduction

The last decade has seen many changes in the way in which mathematicians run
their daily lives The increasing availability of powerful mainframes and
microcomputers and the growing popularity of word processors, electronic mail

and other aids to communication mean that although the overall goals and

141

ambitions of mathematicians may not have altered much, the means by which
they are realized have allered significantly. One of the most important
technological innovations has been the emergence of the Symbolic Algebra System
(SAS). An SAS is a software system (possibly with allied dedicated hardware)
which allows mathematical calculations to be made using a computer {or a
microcomputer). In this definition the important word is mathematical.
Calculations are performed from a otally different standpoint to say FORTRAN
computations, and no approximations ar¢ made This philesophy wiil be more

clearly explained in subsequent sections

2. Symbolic Algebra Systems Presently Available

The symbolic algebra system is essentially a development of the 1980s, and so
although there is quite a wide range of packages available, the market has not yet
been ‘flooded’. Although in subsequent sections we will illustrate our ideas by
considering a specific system (namely MAPLE) it is illuminating to try to give a
summary of the capabilities of some other systems which are currently in use A
comprehensive comparison of different systems is given by Harper, Wooff &
Hodgkinson (1988). They consider the six packages MACSYMA, REDUCE,
MAPLE, muMATH, SMP and SCRATCHPAD. All are written at the most basic
level in what may broadly be descibed as a ‘LISP-type’ language, and most can
either be run interactively, the session proceeding on a ‘question and answer’
basis, by running a file containing a list of ‘interactive’ commands, or by writing
code in the basic language Al share the capacity to read from and write to
external files, a capability which is essential for longer calculations Their

distinguishing features may briefly be summed up as follows -

MACSYMA - This is probably the most powerful SAS currently available It
performs well on many standard problems, and is particularlv good at
integralion, outperforming standard integration textbooks (for example
Gradshteyn & Ryzhik (1980)). The price is paid in terms of machine
requirements however and the CPU time demands which the system makes
render it unsuitable for a multi-user environment i is capable of producing both
TEX and FORTRAN output, as well as graphics

REDUCE : REDUCE is probably the oldest SAS and was designed specifically
for mainframes. It is also the most popular, and is capable of producing

FORTRAN output It cannot, however, solve ordinary differential equations

MAPLE : This system is powerful and has the advantage that it has been
designed with multi-user environments in mind. It is also able to produce

FORTRAN and graphical output

muMATH : Although the range of muMATH is somewhat limited {for example it
has few matrix handling routines, cannot solve simultaneous non-linear equations,
and knows {few special functions) it does have the distinct advantage that it was
designed specifically for microcomputers It is therefore compact and makes

small demands on storage and CPU time

SMP - This is another large and powerful system, with the capability to produce
FORTRAN and graphical output. One [eature that distinguishes it from all of
the other systems which we have mentioned is that polynomial coefficients are
represented as floating point numbers by default. This must be regarded not only
as dangerous from a conditioning point of view for some calculations, but also
contrary to the philosophy of symbolic algebra calculations where approximations

are ‘never’ made

SCRATCHPAD : SCRATCHPAD is really at its best when used as tool by pure
mathematicians [t is capable of both TEX and FORTRAN output. It is not

abie to solve ordinary differential equations.

As well as these systems, there are some ot}i&;rs, notably ALTRAN, CAMAL and
SHEEP but as these are ouside our experience no comment can be passed on
them It is also worth commenting that we have specifically noted above the
capacity of cach system to produce FORTRAN or TEX output. The user who
has had to code or reproduce very long formulae will appreciate how important

this capability can be

3. What MAPLE can do for you

From now on for the sake of definiteness, we will consider only calculations
performed by MAPLE. We have chosen this SAS not because we believe it 1s the
best, but simply because it is the most well-known as far as the author is
concerned. MAPLE was developed at the University of Waterloo, Canada during
the period 1980-1985. As well as the basic kernel, MAPLD includes a large
library of procedures and functions, some directly online and some easily available
by reading other libraries There is also an online HELP facility which gives
definilions and examples

One of the ideas which is crucial to the success and feasibility of MAPLE is
thai il exists in a ‘LISP environmeni'. By this we do not mean necessarily that
the system is written in LISP (actually MAPLE is written in the language C,
with the system kernels existing in the form of macros which can be translated by
a dedicated macro-processor into versions of the kernel written in C) but rather
that to the user, MAPLE has the {ollowing characteristics -
(i) MAPLE can be used very much as an inferactive language This means that
on a simple level where only a small number of casy computations are being
carried out, sessions with MAPLE are of the ‘question and answer’ variety When
more complicated procedures and roulines must be used however these are still
built up in an interactive fashion, with each more complicated function defined
locally in terms of a heirarchy of easier functions. This is completely different
from, for example, the FORTRAN idea where the usual sequence of events is to
wrile large chunks of code, compile them, and then see if they work.
(i1) The MAPLE environment supports, indeed actively encourages, the process
of recursion, the ability of a procedure to call itself. This feature makes the
environment especially suitable for mathematical computations as it allows great
elegance and efficiency
(iii) “Things’ in the MAPLE environment may be variables, lists, constants or
programs themselves, to name but a few possibilities ‘Things’ may all interact
with each other and operate on each other Moreover, it is possible to have a
variable which is itself a program. This gives us the necessary equipment to write
picces of code which themselves write or modify other picces of code
{iv) The basic language of the MAPLE environment is in a very ‘pure’ form,

uncluttered by the seemingly arbitrary additions to the basic syntax which cloud

other languages such as FORTRAN It thus forms a ‘distilled’ starting point
from which to work and so has great flexibility.

(v) In many ways the structure of the MAPLE kernel reflects rigorous
mathematical thinking as the basic approach is an axiomatic one This may also
be said to be true to a certain extent of other programming languages but it is
the ‘distillation’ mentioned above inherent in the MAPLE environment which
makes this form especially suitabie as the stariing point for far more complex
sorts of work which may encompass parts of proof theory.

Given that MAPLE enjoys all these advaniages, what can it actually do for
the user 7 A few examples can ilustrate this most succinctly, though limited
space makes it possible to indicate only a small part of what MAPLE is capable
of To begin with, MAPLE works in infinite length arithmetic All rational
numbers are held in the form n/m where n and m are integers, and non-rational
numbers are stored as themselves, so that for example /2 appears as 2'/% and =
as ‘Pi’. Although in some cases results in rational form may be somewhat
awkward to handle, floating-point versions of the numbers can easily be
produced. As an example of this, consider the evaluation of the binomial
probability of throwing say 50 heads and 50 tails in 100 throws of a fair coin, and
suppose that for some reason we wish to evaluate the answer to 30 decimal
places. The MAPLE commands for this would appear as follows (> is the
MAPLE prompt and the double quotes mean ‘the entity above’ To signify
commands from & MAPLE session we have used plain typeface, and displayed the
MAPLE responses exactly as they would appear at the terminal, namely centred

and ‘prettyprinted’ with exponents and subscripts on different lines)

> 1001 /501/501%{1/2)*%100;

126i14180é8195524166851562157

158456325028528675187087900672
> evalf(",30);

.0795892373871787614981270502422

Differentiation, integration and the solulion of some ordinary differential

equations is easy to carry out using MAPLE For example

> diff(exp(sin(x)),x);
cos(x) exp(sin(x))

> int(1/x,x);
In{x)

> dsolve(diff(v{t),t)+2*v(t)*t = exp(~t),v(t));
v(t) = (- i/2 Pi1/2 exp(-1/4) I erf(I t -~ 1/2 I + C) exp(- t2)

The last example shows that MAPLE not only knows about things such as
arbitrary constants, but can also handle complex numbers and has heard of the
error function. MAPLE also is capable of spotiing some situations where a
seemingly difficult problem is actually an easy problem in another form The
example we give here is an equation which is a quadratic in log(z). The reader
will appreciate that it is no small feat for MAPLE to recognize this fact and solve

accordingly

> solve(log(x)*log{x)+5%log(x) + 6 = 0,x);

exp(-2), exp(-3)

Also, when no analytic solution exists, MAPLE can be asked to try to give a

numerical solution -

> solve{log(x)+sin{x)=0,x);
Warning: no solutions found
> fsolve(log(x)+sin(x}=0,%);

.5787136435

As an example of a calculation which MAPLE is able to perform where

normal methods fail, consider the solution of the N x N system of linear cquations

Az =b

where b is the N x 1 vector with all entries set to unily, and A is the notorious

Hilbert matrix given by
Aij::l/(?:"}‘j) (’t,j"—*’lN)

Any manipulations which MAPLE carries out on these equations will, of course
be exact as they are expressed in terms of fractions. We compared the solution of
this problem via the MAPLE ‘linalg’ routines for solving simultaneous linear
equations and finding determinants and condition number for various orders NV of
the problem to that obtained using the NAG FORTRAN double-precision routine
FO4ARF which uses Crout’s method of factorization, and is well-known for
reliability and robustness. For N = 2 the solutions given were:

-6

MAPLE - x = (2

) FOLARF - % = (—6.600000000000000)

12.000000000000000

so that both methods were performing equally well For N = 5, the NAG routine
still gave answers correct to 10 significant figures, but when N reached 10 the
numerical method was seriously in error, so that for example 3 which should be
-102960 was given by -102972.7208248292 and w5 as -3784168.723631925 (correct
answer -3783780). DBy the time N had risen to 15, the NAG routine would not
execube, returning with IFAIL=1 (‘Matrix singular or too ill-conditioned for
solution’) MAPLE was quite happy to continue to solve the equations exactly
This should not be interpreted as a criticism of the NAG routine, since for the
15 % 15 problem the determinant of 4 is 1/1465387401836668774813339717252
69067959384123502368457086504025547136338728156T1 73259185477862791557
143607640064000000000000000000000 or roughly 6.8 x 10 =¥ and the condition
number of the matrix (defined as || A lo]] A7 |leo } 1s 6008864201304641616585
or roughly 6 x 10%!. Whether or not is is ever sensible to solve such problems is
of course another question entirely

As a final example of the capabilities of MAPLE, we illustrate one mode of
the plotting package in operation. To be able to plot results which may consist of
complicated algebraic expressions is an extremely useful facility, and the user has
the added convenience that MAPLE knows about singularities and badly-behaved
functions, and can deal with these itself Tigure 1 shows a polar coordinate plot
of the function

r(0) = 1+ 8sin(1 + sin(1 + fsin(9)))

Figure 1 MAPLE plot

We are sure that the reader will agree that this is not a function which could
readily be sketched.

4. Limitations and Failings of MAPLE

Having given some examples of calculations which MAPLE can perform
successfully, we now turn fo an examination of some of the failings and
weaknesses of the system. The examples which we shall give below should not
necessarily be thought of as ‘black marks’ for MAPLE - in some cases we are
asking questions which are unreasonably hard and in others we are seeking to
establish the present power of MAPLE by pushing it to the limit.

Firstly let us address the problem of simplification of results and expressions,
a process that for a computer is fraught with difficulties Anybody who has ever
tried to explain to a student how to simplify a long expression will know thal
most of us carry out such operations mainly by instinet. These sorts of processes
are very difficult to code, even to such a receptive environment as MAPLE. In
many ways the problem is similar to that faced by chess-playing computers who

fail to play strategic moves which o a grandmaster would instinctively ‘look

Z1alit AN hennd 1im in tha come ansebinn ie the natian that lane calenlations

‘ysually come out to be neal’ if done properiy - a long held belief which proves to
be true surptisingly often. A good example of some of the deficiencies of MAPLE

in this respect is given by factorization. The complicated polynomial
plz) = 15363 + 40962 + 3840z% + 40962° + 16962° 4 3036z° + 145622 + 21127+

512057 + 3072° + 51202° + 1920z'! + 256 + 241z™° + 24
6271 + 1522 + 202 4 315 + 102217 4 3202 + 336z + 672z

is easily factored by MAPLE using the comnmand

> factor(p(x)J;

6 2 4 2 4
(x+1) (x -2x+2) (x + 2 x +2)

but the very easy
glz) =1+ 32° 4+ 3 + 2

which any first year student could factorize as (1 + 2'/%) yvields merely itseif
under MAPLE's factorization routine. Notice also that in the final expression for
p(z), in spite of having performed an enormously difficult factorization on a large
polynomial, MAPLE did not spot that

(2% — 2z 2)(z® + 2z + 2) = 2" + 4!

Another critisicm which is often levelled at MAPLE is that it sometimes produces
apswers in an inconvenient form The answer to this is of course that every user
has his or her own preferences as far as expression presentation is concerned, and
consequently it is not unreasonable to expect the user to know the correct
commands to convert the expression into the desired form It is true however
that sometimes manipulation of subexpressions contained in large formulae is not
as straightforward as it could be

A good test of any symbolic manipulator is the ease with which it handles the
operation of integration A particularly difficult type of example is illustrated by
the MAPLE command

> int(cos(x)/sin(x)/log(sin(x)) ,x);
which gives the MAPLE answer

1a{in(sin(x))

Here MAPLE has integrated the function which it was told to, but has recovered
a primitive which exists NOWHERE on the real line! (sin{x) is always between
—1 and 1, so that its log has maximum 0 and consequently the log of that is
complex). The problem here has come about reailly because MAPLE does not
know quite enough about the properties of the logarithm. It does redeem itself
however, for when the integration is carried out between two limits (say 1/10 and
2/10), ‘evalf’ing and ‘evalc’ing (evaluate to a floating point number and evaluate
to a complex number respeclively} does actually yield the correct answer. As far
as more general integration goes, MAPLE’s capabilities vary. For example, it is
able o integrate .
r(z) = diff{ f(z), =)
1+ fl=)
to get
fx r(z)dz = log(l + f(z}),

but is unable to integrate the expansion of the expression diff(r(z), z) with
respect to = to get 7(z). It is also true that for some integrals the user may have
to help MAPLE slightly by making a judicious substitution, after which the
computer can take over and do the rest of the work

One of the traps which MAPLE occasionally falls into constitutes a sacrifice
in rigour for the sake of adding a new function to its library An example of the
this is the MAPLE function iscont({ function], range) which claims to state
whether a function is continuous or not over a given range The function can
return three different values © ‘true’, ‘false’ or ‘FAIL’ which indicates that the

routine cannot handle the problem. Testing the procedure with the example
> iscont(sin(x)/x,x=-1..1);
gives the answer

false

which is wrong Note here that we really do not know how MAPLE has arrived
at this answer Clearly it has not produced the standard undergraduate ‘¢, 8’
argument, and for all we know it may have erroneously concluded that the
product of a continuous and a discontinuous function must always be

discontinuous
To conclude, we should realize that all of MAPLE's calculations must be

11 Lk cn i e cnlnd MIADTI TR e mnt and navar will ha the fsavnert

system which makes experts superfluous’ The somewhat esoteric game of scoring
points off MAPLE by catching it out is valuable, and should be played at some
juncture by every MAPLE user.

5. Conclusions and Possible Future Developments

The 1980’ have seen Symbolic Algebra Systems elevated from computing
curiositics to valuable and powerful tools {or both teaching and research. This
rise may be likened to the increase in the late 1960°s and early 1970°s in
mainframe specifications which allowed realistically complicated scientific
calculations to take place. Using an SAS it is now possible to undertake
{heoretical computations which were simply not feasible ten years ago simply
because of the time it took to commit them to paper. In some senses symbolic
algebra has now reached a crossroads in its development, for running paraliel with
advances in Lhe field have been great achievements in the fields of expert systems
and artificial intelligence, The great challenge in the 1990’s will be to combine all
of these disciplines to produce a new breed of symbolic manipulator which may
have the ability to prove simple theorems, recognize abstract structures and show
some elementary form of mathematical creativity. It is possible that such
advances will also be linked to pure mathematics (as in the usc of Lie groups to
solve ordinary differential equations). Certainly if advances such as this can ever
be made, the effort required te bring them about will lead to a massive increase
‘s our own basic understanding of ‘how mathematics works’ It is to be hoped
that throughout any such development, the rigorous general philosophy of
symbolic algebra computations will be adhered to - we must always be willing to
allow our systems to give the answer ‘don’t know' if the result is not absolutely
watertight, and never fall into the trap of settling for second best as far as rigour
is concerned in order to speed development or compete with other svstems 1f
these advances can be made, then the Svmbolic Algebra Svstemn will assume a
role orders of magnitude greater than the already indespensible one which il

enjoys at the present time

References

Gradshteyn, 1.5. & Ryzhik, I.M. (1980) “Table of Integrals, Series and
Products’ Academic Press

Harper, D., Wooft, C. & Hodgkinson, D (1988) ‘A Guide to Computer Algebra
Systemns’ University of Liverpool Report 1988

