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A mathematical model for the heat treatment of glass fabric sheets
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During the industrial process of glass fabric manufacture in Latvia, an oil that has eatlier
been added to the fabric must be removed. To accomplish this, the fabric is passed through
a furnace where the oil is removed by burning. It is known that the ofl removal process
reduces the tensile strength of the fabric. The burning process is analysed via a simple
mathematical model that allows the furnace parameters to be optimized. Using some of the
well-established properties of glass, it is shown that it is the cooling rather than the heating
process that adversely affects the final product. A thermoviscoelastic model is developed to
predict the permanent stress in the glass fabric. Some suggestions for modifications to the
process are also examined, and it is shown that, to a large extent, the strength of the fabric
may be preserved without significantly adding to the cost or intricacy of the production
process.

1. Introduction

This study concerns the optimization of a process for producing a glass fabric Such fabrics
are used for protective, electrical, and thermal insulation and decorative purposes. The
particular product that is discussed below is manufactured at the Valmiera Glass Fibre
Plant in Valmiera, Latvia.

The glass fabric may be thought of as a woven material, individual glass fibres forming
the ‘thread’ of the fabric. The glass threads that are used are extremely small (typically
6-9 11), and a typical sample of fabric has a thickness of about 0.2 mm. During the initial
stages of the manufacture of glass threads and the weaving of the fabric, it is necessary to
add oil to the glass in order to form the required product. Once the weaving is complete,
however, the oil is no longer required. The oil itself occupics only about 1 per cent by
mass of the woven glass fabric, and, were it not for its chemical properties, could safely
remain permanently in the fabric. A number of reasons, however, make it essential that
the oil is removed. Firstly, the efficiency of the fabric as a thermal and electrical insulator
would be severely compromised by the presence of oil. Secondly, the oil blackens the
fabric, and for decorative purposes the fabric is required to be white. The fabric is therefore
unusabie unless the oil can be removed. For the purposes of the following discussion, it
may be assumed that, to make a commercially successful product, the oil must be reduced
in volume fraction to a ‘safe” level of about 0 05 per cent.

In order to remove the oil, the fabric is pulled through a furnace (see Fig. 1 for a
schematic diagram) The furnace chamber is 1166 mm long, 1430 mm wide, and has a
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FiG 1 Schematic diagrarﬁ (not to scale) of furnace, fabric, and heaters.

height of about 350 mm. Heat is provided by diesel-fuel-powered elements situated at the
top and bottom of the furnace (see diagram) Further details of the heating process will
be given in the next section, but the basic intention is that the fabric should be heated to
a sufficient temperature so that the oil burns and is therefore removed. It is worth noting
that, under normal operating conditions, most of the oil is expected to burn away in a fairly
short ‘burning zone’. However, even when this has happened, some isolated spots of oil
remain in the fabric. It is therefore essential that the furnace exit is placed some distance
from the end of the ‘burning zone’ so that these remaining jmpurities may be removed.

Underneath the burning zone, a pipe is placed in the furnace. The pipe has alarge number
of holes, and air is blown into the pipe from outside the furnace. This arrangement has two
advantages; firstly it assists the combustion process, and secondly it provides a constant
throughput of air to allow combustion products to be removed at the entrance and exit to
the furnace. (It is possible that changes to the models presented below should be made to
account for the effect of this air on the combustion zone In the factory, however, the air
injection is regarded more as a means of removing pollutants than as a way of enhancing
combustion. In the absence of any firm data, therefore, its effect on the burning zone has
necessarily been ignored.)

Evidently the parameters of the furnace (for example, the pull-through speed of the




MODEL FOR HEAT TREATMENT OF GLASS FABRIC 57

fabric and the properties of the heating elements) need to be optimized in order to ensure
that a sufficient amount of oil is removed from the fabric using as little energy as possible,
but in addition to this there is a further effect that must be considered: it is known that the oil
removal process adversely affects the tensile strength of the glass fabric. The real challenge
therefore is to minimize the loss of tensile strength in the material as well as minimize the
energy required to burn away the oil. In order to discuss this problem completely, we shall
see that the fate of the glass fabric after it has left the furnace region needs to be carefully
analysed; at present the fabric simply exits into air at room temperature. Once the process
by which the fabric loses strength has been understood, it is possible to pose some plausible
{and economically viable) possibilities for improving the process.

2. A mathematical model of the farnace

‘We begin by proposing a simple mathematical model for the behaviour of the glass fabric
inside a furnace. For convenience, a list of the notation used is provided in the appendix.
Using the coordinate system given in Fig. 1 we assume that the fabric occupies the region
[0<x < L,0<y<38,0< z < D}inthe furnace and is drawn through the furnace
in the x direction with constant speed U. In reality, fabric sheets of width D = 1.1 m and
thickness § = 0.2mm are used; we therefore neglect variations in the g direction. The
temperature distribution in the fabric at a cross-section z = constant satisties

aT aT 8 { aT a  aT -
v = ey (k) 4 A, 1
pcp(ar+Uax) 8x(8x)+6y(8y)+ ! M

where p and ¢p denote respectively the density and specific heat of the glass fabric, & is
the thermal conductivity, and T is the fabric temperatore. The term R1, as yet unspecified,
denotes the heating sources arising from chemical reactions and any other effects that may
occur in the fabric.

Some approximations have implicitly been made in (1). Strictly speaking, since the fab-
ric contains a small amount of oil, the thermal constants should take into account the prop-
erties of the oil. Thus, for example, we should write (given that the dependence is linear—a
large assumption in itself) k = k +koc where ko denotes the thermal conductivity and ¢ the
concentration of the oil. Because the oil concentration never exceeds about 1 per cent (by
mass) of the fabric, however, variations in p, ¢p, and & due to the presence of the oil have
been neglected. The equation (1} also assumes that the amalgam of glass rods and air that
constitutes the fabric behaves as an ‘ordinary’ conductor. Since the time scale for diffusion
across a 10 y air gap is around 10> seconds and the flow through the fabric is negligible,
this seems an entirely reasonable assumption.

Before proceeding further, we note that, since distances in the y direction are typically of
order 8 = 0.2 mm, while k = 1 38 W/m/K, p = 1100 kg/m3, and ¢p = 690.82 J/kg/K, and
the y diffusion time scale in the glass fabric is of order pcp52 [k ~ 2 x 1072 sec. Usually
the fabric speed U is of order 20m/min ~ 0.33 m/sec, and the furnace heater length is
L = 1.166m, the residence time in the furnace is thus typically 3 5 sec, and so heat is
transferred from the fabric surface to its interior extremely quickly after it has entered the
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furnace. We therefore work from now on in terms of an average temperature defined by

]
Tx,0) = %fo T(x,y,t)dy.

Having integrated (1), we obtain
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Before further simplifications are performed on (2), we will consider the boundary con-
ditions that describe the external mechanisms such as the radiation from the heaters and
the convection arising from the air pipe underneath the burning zone. Assuming first of all
that radiative heat transfer of the simplest possible type takes place, on the top side of the
fabric where y = §, we have

ki—z = e (Ty — TH + (T (T — T). 3)

Here ¢; is the fabric emissivity, o is the Stefan—Boltzmann constant, Tiy is the temperature
(assumed constant} of the heater at the furnace top surface, 7 is the temperature of the
gas in the furnace, and « is the convective heat transfer coefficient. Complicated models
for & may be proposed; for the current purposes we simply assume that (see, for example
Miheev (1940))

(Ty=N b
o = uL,

where the Nusselt number Nu is defined in terms of the gas Reynolds number Re =
LUy /vy by

T
Nu = 0.044Re? 77—
Tg

and U, vy, and k; are respectively the velocity, kinematic viscosity, and thermal conduc-
tivity of the furnace gas. We shall assume that Re, &z, and v, are simply given; in reality
they depend on temperature, so that, for example for Ty = 720°C, we have kg = 0 0669
W/m/K and vy = 1.20 x 10-* m?/sec, while for T; = 30°C the relevant values are
kg = 0.0258W/m/K and v, = (.166 x 10~ m%/sec, As far as the gas flow rate is con-
cerned, the entrance and exit to the furnace are relatively narrow. It therefore seems plausi-
ble that much of the air from the pipe beneath the burning zone is convected with the fabric.
In the absence of any firm experimental data, we assume that Uy ~ U = .33 m/sec.

For the boundary condition at the bottom surface y = 0 of the fabric, arguments similar
to those used for (3) apply, giving

—k% = g0 (T — TH + (T[T, — T, @)

where Ty, is the temperature of the heater on the furnace bottom.
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The expressions (3) and (4) may now be substituted into equation (2). Further assum-
ing that T'(x, y, #) is constant in y (see later section for equations appropriate for thicker
fabrics) for a given x and ¢, so that T{x, y, t} = T (x, ¢}, we find that

aT aT 9 aT €5 20(T
pep (g + Ua) = (ka) +—f8—(Tift+be—2T4)+ ; (T, —TY+ R, )

Until now, possible contributions from reflected radiation have been ignored in the
boundary conditions (3) and (4). The distances between the fabric surfaces and the heaters
on the top and bottom of the furnace are 200 mm and 150 mm respectively, while the heater
temperatures are typically T = 700°C and Tiyp, = 850°C. We may expect, therefore, that
the impact of reflected radiation will be greater from the bottom of the furnace. (It is not
easy to estimate a priori how much more important the contributions from the bottom will
be; our approach will be simply to ignore reflected radiation from the top surface. The
justification of this comes mainly from the results contained later in the paper.) If the ef-
fects of reflected radiation are to be included, the boundary condition (4} must be modified.
Consider the fabric surface; then if J; and Gy denote respectively the radiosity (radiation
leaving the fabric surface per unit time per unit area) and irradiation (radiation incident on
the fabric per unit time per unit area), and re denotes the total fabric reflectivity, we have,
in the absence of transmission, ry + € = 1 and therefore, taking a reflection into account,

Ji = oeT* 414G, (6)

The net energy Qr leaving the fabric surface is

. Jr — oeeT?
Qr=J— Ge=oeT* — ¢ [-f—-—&} ‘_
1 —¢f
The boundary condition (4) thus becomes
aT € - . .
VLI | (Js—coTh +a(M(T;-T) (N
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As yet, J; is unknown, However, from (6) we know that J; is given in terms of T and Gy.
The net irradiation Gy at any point on the fabric arises from contributions from all points
on the heater Using an elementary geometrical argoment (see Siegel & Howell (1972) for
further details) thus gives

a

2 2+ a2y

L
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0

where Jy, is the heater radiosity. Accounting for a refiection from the heater in exactly the
same manner as from the fabric, the heater radiosity must satisfy

a

2((E —x)2 + a2 “

L
hhx, ) = o Th + (1 — ) fo HE D)

where ¢y, is the heater emissivity and a is the distance between the boitom heater and the
fabric.
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Some more attention will be given below to the properties of the oil, and for the present
we assume simply that, when the oil burns, it does so via a simple one-step Arrhenius reac-
tion with activation energy E,, the energy release being proportional to the concentration
¢ of il (measured in mol/m?®) remaining at any particular time and position in the fabric,
The equations thus become (in the absence of reflected radiation)

aT  aT 32T o 20(T
pcp( +U ):k +—g—-(Tlﬁ+Tlﬁ)—2T‘4)+ ( )(Tg—T)+cAHAexp(—Ea/RT)

a  Cax) Cox2 J
ac + UE = —cAexp(—E,/RT),
at dx

or, when the effects of reflected radiation are included,
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Here A is a pre-exponential Arrhenius constant, AH is the heat of combustion of the oil,
and R the gas constant.

Some comments on these two models are in order; In the first model, the unknowns are
T and ¢, and the boundary conditions are that T is given at the entrance to the furnace and
T, is zero at the (insulated) exit to the furnace, ¢ is given at the entrance to the furnace, and
initial distributions of T and ¢ are given.

When reflected radiation is included, the unknowns are now T, ¢, Jy, and Jy. The bound-
ary and initial conditions, however, are identical to the previous case since, if the temper-
ature is known at ¢ = 0, the two integral equations may be solved to yield Je(x, Q) and
Jhix, 0).

2.1  Non-dimensionalization of the equations

In order to determine the relative importance of terms in the equations, a non-dimensional-
ization may be performed. Considering for simplicity the equations where reflected radi-
ation is ignored (the inclusion or otherwise of reflected radiation evidently changes the
quantitative results, but cannot affect the orders of magnitude involved) we set x = LX,
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t = Lt/U, T = Ty, and ¢ = ¢o€, where ¢y is the initial concentration of oil in the fabric.
On dropping the bars, the equations then become

36 96 320 Toe \* T,
L NN | (222 41~ 20% |[+Ns [ =2 — 0 J+Nscexp(—Na(1-8)/6),
ar ' ox 9x2

Tiw Tiw
3¢ dc
LN _ _
” + P sc exp(—Na(1 — 8)/6},
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k LT3 2Lo(T
Ny = L Np= T N3=~—a( ),
LpUcp pUcpd pUepd
E, col AHA LA
Ny = R Ng = ——— —E./RGw), Ng = —— ~E./RT
‘= R 5 oUcoTom exp(—Ea/RThw) §=7 exp(—~E;/RThy)

Using the values of the constants given in the nomenclature table, (and assuming for sim-
plicity that ¢ is evaluated when T = 7,,) we find that

Ni ~ 4.7 x 1079, Ny~ 1.72, N3 ~ 006,

Ng ~ 17.14, Ns ~ 51.26, Ne ~ 128.68.

Some simple conclusions may be drawn from these results; first, the diffusion in the x di-
rection is negligible and will be ignored. (In this case the boundary condition at the furnace
exit is no longer required.) Secondly, since Ns is sizeable, it transpires that the combus-
tion reaction makes a non-negligible contribution to the overall heat balance within the
furnace, and must be included in the energy equation. Finally, the size of N4 suggests that
a high-activation-energy approach may be possible, though we do not pursue this further
here.

A comment regarding flow in the glass is also in order. When the thermal properties
of glass are discussed in more detail in the next section, it will emerge that the furnace
operating temperature is well above the melting point of glass, The question therefore
arises as to whether significant viscous flow can take place in the glass. To answer this,
we consider the slow viscous flow, under gravity, of a single fibre filament of radius 2 =
0 1 mm say. Flow can only take place if the pressure and viscous forces in Stokes’ equations
are balanced by the gravitational body force term; thus if V (= /1) denotes velocity, and
7 is a typical time taken for the giass to ‘slump’ an order of magnitude distance £ under its
own weight, we must have

A
ph?

Hence the time scale for appreciable flow in the fabric is given by v ~ v/hg. To obtain a
‘worst-case” estimate, we consider glass at 1300°C and use the data for KG-33 Borosilicate
(one of the less viscous glasses at this temperature), This has a dynamic viscosity of about
500 N/s/m?, giving T ~ 625 sec. Flow in the glass may therefore be disccunted.
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2.2 Properties of the oil

Before solutions to the models described above may be obtained, the relevant physical
constants must be identified. Owing to the chemical complexity of the substances involved,
this is a non-trivial matter. The chemical formula for the oil is known to be CyaHagN3 O,
and the burning reaction proceeds via

CosHagN307 + 31,50, — 22C0; + 23H;0 + 3NO

The chemical and combustion properties of oils are not easy to determine. The factory
at Valmiera has conducted experiments that suggest that the ignition temperature of the oil
is given by T;, = 420°C. For the heat of combustion AH of the oil we rely again on data
provided by the Valmiera factory, the recommended value being 2.596 x 107 Tkg=1207x
107 J/mol. As far as the activation energy is concerned, although detailed information is not
available, E, does not change a great deal for a large range of oils; Brandrup et al. (1975)
suggest a value of 170-200kJ/mol, and, based on some other values available for oils, we
assume that in this case E, = 160kJ/mol.

To detertnine the initial concentration ¢g of oil in the fabric, we assume that a standard
calculation may be used to determine the molecular weight of the oil. This gives 0.465
kg/mol. Assuming that before burning commences the fabric contains 1.2 per cent oil by
weight, then (assuming that p, = 1100 kgfm?) gives cg = 28.387 mol/m?.

Because of the difficulty of obtaining reliable values for the required constants, it is
important to indicate the likely error involved. For the initial concentration, the activation
energy, and the heat of combustion, it is possible to be fairly sure that, while the values used
may contain errors, they are certainly correct to within an order of magnitude. We also note
that, under general conditions, the mechanisms by which heated waxes and oils burn are
extremely complex and may involve evaporation, separation of volatiles, and many other
sub-processes. These possibilities have not been catered for in the analysis. As far as the
pre-exponential Arrhenius constant is concerned, data are very hard to obtain, and the best
that we have been able to do is to take a rough average based on the properties of ‘similar’
materials, arriving ai a value of A =10 x 10%sec.

3. Temperature predictions in the fabric

The models proposed in the last section now allow the temperature of the fabric and the
concentration of oil to be predicted Although the start-up and wind-down processes may
be of some interest, for the most part the process runs continuously, so that any dependence
on time may be ignored.

3.1 Predictions with ro reflected radiation

In order to determine the details of the oil removal process according to the simple model,
it is necessary to solve the (dimensional) ordinary differential equations

dr _&O 2e(T)
de ¢ 3

pcplU (T3 + T, — 2T + (T, — T)+ cAHAexp(—E./RT), (8

U:x—c = —cAexp(~E,/RT), 9
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with
T =T, ¢(0) = ¢p.
Here Ty denotes the ambient temperature of the fabric before it passes into the furnace.
Although it is not possible to determine a closed-form solution to the equations (8) and
(9), solutions may easily be obtained using standard library routines. (In this instance, the

MAPLE (version 2) routine ‘dsolve,numeric’ was used. This employs a Fehlberg 4th-5th
order Runge—Kutta method. All computations were carried out out on a Sun SPARC2).

3.2 Predictions when reflected radiation is included

For the steady case with reflected radiation, the equations are

dar €f 4 1 4
pcha=3[a(Tﬁt—T )+ 1 _ef(Jf—G'T )
20e(T)
+ 5 Ty —T)+c A HAexp(—Ea/RT) (10)
de
U— = —~cAexp{—E,/RT), (11)
dx
a?.

L
Je(x) = €0 T(x) + (1 ‘Ef)j;} (&) dg, (12)

2E - 0T+
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2GR

These must be solved subject to the boundary conditions T(0) = Tp, c(0) = ¢p Since an it-
erative method of some kind will clearly be required, it is worth giving some thought to the
most efficient way of solving the ordinary differential equations that arise. Writing the dif-
ferential equations as ¢’ = f(y), we may estimate the eigenvalues of the Jacobian 3f /dy.
Using values for T and ¢ at various x stations from the results of the previous section, we
find that the ratio of these eigenvalues can attain values of order 10, and hence the differ-
ential equations (as is commonly the case with problems involving chemical reactions) are
stiff. When reflected radiation is ignored, this does not present practical problems, since (8)
and (9) have to be solved only once, and efficient and accurate solutions may be obtained
using standard methods with very small time steps. When (12) and (13) must be solved
as well, however, an iterative scheme is necessary, and backward differentiation formu-
lae (BDF) are required. The NAG routine DO2EAF was therefore used. This is designed
specifically for stiff first-order systems and uses a VSVO method implementing BDE. (For
further details see Hall & Watt (1976).)

The equations {10)-(13) may now be solved using a straightforward iterative method;
beginning with initial estimates for the functions Ji(x) and Jy(x), (in the calculations re-
ported below, both were initially assumed to take the value € Tifb) the two ordinary dif-
ferential equations (10) and (11) are solved numerically to obtain new estimates of ¢ and
T. Assuming thereafter that J; and J, are piecewise constant on intervals [x,, x,11) where

L
o) = eno T + (1 — &) ﬁ ) (13)
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%, = nAx (n € N) and the interval [, L] has been divided into subintervals of width Ax,
a simple trapezium-rule approximation shows that (12) and (13) may be approximated by

Te(xn) = €0 T4} + (1 — ) Y 5

= (Jh(xj+1) + Jn(x)
7=

) [g(xj+1,xn) - 3(xj,-xn)],

N—-1 . .
In(xe) = eno T + (L =€) ) (w—)

) [g(xj+1’xn) - 3(xj: xn)]s
j=0

where
Xj— Xn

g(xj: xﬂ) = -
2,/ (xj — x)t 4+ a?

1t is worth pointing out that many more-sophisticated schemes may be developed by us-
ing higher-order integration rules. For our purposes, however, the scheme described above
proved to be satisfactory. Lack of space precludes any detailed analysis of this method, but
in all cases convergence was achieved after around 100 iterations. The usual comparisons
for different numbers of mesh points indicated that the method was giving consistent and
accurate results when 100-200 mesh points were used.

3.3 Results

It should be noted that, in all results given here, the emissivity of the fabric was taken to be
0.92. Originally, engineers from the Valmiera factory estimated that the fabric emissivity
was between 0.4 and 0.6, a result partly motivated by the white appearance of the fabric.
If computations are carried out with these values, however, it soon becomes clear that the
fabric does not reach the temperatures that are observed. Because of this fact, separate
experiments were carried out at the University of Latvia in Riga to determine ¢r. These
indicated that a value of 0.92 was much more realistic, and so, in spite of its appearance,
the fabric behaves more like an ideal black body This is primarily becanse of the porous
nature of the fabric. Forther numerical experiments (for details see Buikis et al. (1997))
may be performed to show that the temperature is very sensitive to the value of the fabric
emissivity that is assumed.

Figure 2 shows typical results for the model with no reflected radiation. Using the param-
eter values given in the appendix, we find that the fabric temperature rises to a maximum of
about 1350 K before falling to a constant value. (This constant value, givenby T ~ 1056 K,
can of course be calculated simply by solving the quartic equation which results when all
derivatives and the oil concentration ¢ are set to zero in (8) ) The oil concentration remains
virtually constant before falling to zero over a *burning zone’ which approximately occu-
pies the region 0.25-0 32 m These predictions are generally in accord with observations
made at the factory, and confirm that, with the parameter values carrently used in the pro-
cess, there is time for any remaining oil blemishes to be burned out of the fabric before the
furnace exit.

The fact that the fabric emissivity ~ 1 may be used to provide a check on the numerical
solutions to (10)—(13). Although in all cases the numerical scheme scemed to be producing
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FiG 2. Fabric temperature and oil concentration for model with no reflected radiation.

credible results, confidence in the predictions may be increased by non-dimensionalizing
{12) and (13). Setting x = Lx, T = T8, Jr = JT]bef, and J, = aTﬁ)Jh, we find that

1
Ji(®) = e6* + (1 — &) fo hEKE, ) d5,

1
RE =@+ —e) fo REKE 5 dE,

where

b2
2(E - D2+ 6
If we now assume that ¢ = 1 —e and e, = 1 — s¢, where € « 1 and s = O(1), then using
regular perturbation expansions

KE 5= (b=a/L)

=Joteln+eiin+ ., Jo=do+eh+ethnt ..
we find, on inserting the expression for Jj, into the integral equation for Jr, that

J@) = '), Jn (%) = —04(x) + g1(®),
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and
i
Jn(®) = —sg1(®) + s L 6% (E)ga(E, 51) di1,

where

1—-x x

+ .
2V (1 -2 +b2 2VE2+ b2

1
g1(®) :/0 K(E, %) dE = g(1, %) — g(0, %) =

1
02E F) = fo KE DK G, B) dE.

This provides an ‘asymptotic’ reflection equation that replaces (10), giving (correct to

0(e))

aT  oery. 4 . T L—~x X
popU—=—|Ty —2T"+ = + +
a8 ["‘ 2 \J/L-x2+a2 ~xiit+a

2(T)
§

Figure 3 compares results produced by the full systemn (10)—(13) using 200 mesh points
(bold line) and the asymptotic reflection model (broken line)} Bearing in mind the fact that
the small parameter ¢ in this case is only (.08, the close agreement seems to indicate that
the numerical method for solving the case when reflected radiation is included is giving
accurate results. Some further numerical experiments employing larger numbers of mesh
points and smaller values of € confirmed the close agreement.

Figure 4 compares results for standard parameter values with (solid lines) and without
reflected radiation (broken lines) The principal effect of the inclusion of reflected radiation
is to slightly postpone the burning zone. The fabric temperature is also slightly reduced near
to the furnace exit. ‘

As a result of the computations described above, and from other cases that have been
examined but not detailed, we draw the following conclusions.

(Ty ~ T) + cAHAexp(~Ey/RT)

(1) For the realistic range of constants discussed above, the amount of oil is reduced to the
required level within the furnace as required.

(ii) Using the simpler model {no reflected radiation) an estimate of the width of the ef-
fective burning zone may be made by comparing results when the chemical-reaction term
is respectively included and (incorrectly) excluded from the energy equation. When these
results differ by more than 10 per cent in relative size, we assume that the burning zone
has been reached. In the present case, this gives a burning zone extending from 0.25 to
0.32 m from the entrance to the furnace. When reflected radiation is included, the burning
zone occupies the region 0.33-0.40 m. Granted, the figure of 10 per cent is arbitrarily cho-
sen, but the burning zone thus predicted when reflected radiation is included agrees very
closely with observations from the factory, providing yet further evidence that the model is
giving accurate results. We further conclude that, in order to make gualitative predictions,
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reflected radiation need not be included, and the simpler model may be used. If accurate
predictions are required for the position of the burning zone, however, then reflected radi-
ation must be included,

(iii) In almost all cases, the fabric temperature attains an almost constant value in the last
half of the furnace before exit.

{(iv) The simple model described above may be used to optimize the process; its accuracy
and the value of its predictions will depend largely upon the availability of the relevant
constants.

4. Modelling for thicker fabric sheets

In the models discussed above, the fabric sheet was so thin that the assumption that the
temperature through a fabric sheet was effectively constant could be made With industrial
applications in mind, it is worth pointing out that there may be other processes and prod-
ucts of a similar kind to those considered above where, although the fabric sheet is still thin
compared to its length, its thickness is an order of magnitude greater. As well as consider-
ing thicker fabrics, the Valmiera factory may change other parameters in the manufacturing
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process (for example, by increasing the speed of the fabric) which would be equivalent to
producing thicker fabrics.

In such cases, a different model is applicable. For reasons of brevity, we do not discuss
fully the implications of thicker fabric sheets (a more complete analysis would have to
address matters such as whether or not the oil concentration was a still a function of x
alone, and what role was played by the various heating sources). Assuming simply that the
temperature distribution in the fabric is now linear in y, we may write

T(x,y,8) =T, 1)+ AT(x, )y — 8/2).

With the effects of reflected radiation included, the model is now given by the equations

aT aT 92T
S = e
pcp(a: + ax) 2

1
1 —er

% [J(Tli —(T + ATS/2)y + (Ji — o (T — AT5/2)4)] +

2
?“(Tg _T) + cAHA exp(—Ea/RT),
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a

2 ~ ) + a2 %

L
Ji(x. ) = o (T(x, 1) = AT (x, t‘)3/2)4 +{1- ef)fo Ju(E, 1)

a2

3G —x + a7

L
Jo(x,8) = eno Ty + (1 — éh)fo Ji (€. 1)

9
9 U2 o chexp(—Eu/RT),
at ox

where AT is found via the boundary condition (3) to be
k AT(x,t) = ecolTiy — (T{x, t) + AT (x, )8/ 1+

a(T + ATS/2)[Ty — (T (x, 1) + AT (x,1)8/2)].

This problem may be solved in virtually the same manner as that described above, the
only slight extra complication arising from the fact that AT is determined by a quartic
equation. The problem for thicker fabric sheets may thus be addressed, though it will not
be considered further here

5. Degradation of fabric strength

We have seen from the simple analysis presented above that the furnace provides suffi-
cient heat to efficiently remove the necessary amount of oil from the fabric. Some attention
must now be given to the main drawback in the procedure, namely the reduction of fabric
strength that is associated with the heating and subsequent cooling process. For many hun-
dreds of years it has been known that the properties of a solid glass sheet depend crucially
upon the manner in which the molten product is cooled. In modern glass production the
process of annealing, whereby the temperature of the cooling glass is strictly controlled, is
necessary in order to prevent the creation of residual stresses that lead to fragile products.
For high-quality optical glass, even more careful annealing is necessary as the refractive
index is especially sensitive to cooling (for example, according to Jones (1971), the 200-
inch mirror built for the Mount Palomar observatory was cooled from 500 to 300 degrees
C at arate of less than 1 degree C per day).

For the glass fabric under consideration, the main concern is the strength of the finished
product. Many different models have heen proposed for the calculation of transitory and
residual stresses in glass, but the studies by Adams & Williamson (1920a,b) have come to
be recognized as the first successful theoretical attempts to model the process of anneal-
ing, At high temperatures, it is assumned that the viscosity of the glass is such that thermal
stresses may be instantly relieved, or at least, possess a relaxation time that is small com-
pared to time scale of the annealing. Stresses are set up as the glass cools, and permanent
stress distributions may be created as room temperature is approached.

The purpose of the present siudy is to examine simple improvements to the current
glass fabric post-production process that will reduce the stresses set up in the glass as it
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cools. To obtain accurate quantitative results is extremely hard; the prediction of permanent
residual stresses has long been recognized to be a formidable problem. We therefore seek
to establish a theory that gives qualitative results that nevertheless allow different cooling
strategics to be compared. It will be noted below that the thin-layer theory that will be
developed not only allows this, but may be generalized to allow for more involved effects;
the complications involved are formidable however and the details will be postponed to
subsequent studies.

The fact that both viscous and elastic effects are important in the glass solidification
process has been recognized for many years (see, for example Narayanaswamy (1978)). A
thermoviscoelastic model is thus required. We use the equations

d
kV2T = pey— + mTr——, (14)

30;;
—L + pbi = pa,
ax;

Pioi; = Paeij + (KP1 — P2/3)dje1 — 3K ey Py (T — TR),

1/8u; By
= 5(5;;+ ax,-)'
Here o;; is the stress tensor, e;; the infinitesimal strain tensor, the u; are the elastic dis-
placements, b and @ represent respectively the applied body forces and the acceleration,
T is the reference state at which the material is stress-free, and m = 0 (34 + 2} As
usual, A and w are the Lamé constants for the glass, whilst «, denotes the coefficient of
linear thermal expansion (dimensions K~1). The differential operators P and P2 model
the effects of viscoelasticity, while K is an elastic constant. Many choices are possible for

both Py and P3: in the current study we assume that a simple ‘Maxwell body” model (see,
for example, Boley & Weiner (1960)) is appropriate wherein

1 d 1 d

Pl = —— + — P, =—,
(T T

and K, the bulk elastic modulus, is given by K = A + 2u/3. In this formulation, the
viscosity of the glass fabric is denoted by %, which is assumed to have dimensions of
kg/m/sec. As usual, we consider the time-independent (steady-state operation) problem
only, so d/dt = Ud/9x.

As well as the assumption of small elastic displacements, this theory assumes that the
temperatures are such that (7 — Tr)/Tr may be regarded as small. For glass, this is tan-
tamount to the previous statement that the permanent stresses are set up only as a sample
of fabric approaches room temperature. It is also worth bearing in mind that there is a little
evidence to suggest that, for some kinds of glass, nonlinear elastic effects may be impor-
tant. It is difficult to see how these could be included in any theoretical study, however, and
such complications are therefore ignored.

Some discussion is also merited concerning whether or not the glass fabric behaves as an
‘ordinary’ thermoviscoelastic material. If the woven fabric fibres are effectively pinned at
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the crossover points then thermally induced stresses could possibly be relieved by sliding.
At the temperatures of interest, however, it seems unlikely that any sliding can take place.
Examination of glass fibre samples {(which we were able to briefly carry out in Riga) sug-
gested that the fabric resembled a consolidated glass sheet to all intents and purposes, its
only exceptional property being its flexibility at room temperature. The fabric weakening
that concerned the manufacturers was, we were assured, essentially no different from that
seen in ordinary sheets of glass. Accordingly no account has been taken of the behaviour
of individual rods of which the fabric is composed.

Our first observation is that the coupling term m Trdegg/dt in the temperature equation
may be ignored. To see this, we compare kT, with mTRU d(egi)/0x. Using m = oo (31 +
2u), we find that scaling x| and x; with L and k respectively and using representative
values e = 7 x 107K, A = o = 2.4 x 1019 N/m?, the elastic displacement would need
to have an order of magnitude of

N kL?
T 20 UG+ 2m)
to contribute to the equations.

We now analyse the equations (14) in a thin layer of glass. Writing u; = u, u2 = v,
x1 = x, and x» = y for simplicity, we observe first that inertia may clearly be neglected.
Also, gravity is unimportant, and thus body forces will be ignored. (Note: in this section
we use a redefined y axis so that y = (0 is the plane of symmetry of the fabric. Inside the
furnace, conditions are different at the top and bottom heaters. Outside the furnace, how-
ever, conditions are truly symmetrical. The variable x is now measured from the furnace
exit.)

The problem that must be solved therefore amounts to

~ 600 m

U do; 1
o 8; + —ai; = Ajj, (15)
div O’,‘j = 0,
where
_ Be,‘r (Gr - 2 dey; GA+2u) U Bey
A=V 6u ox &ij+ 6n eukdij ?&‘IHGT_
U (T —Tr)
(32 +2u)oe [2—5— + T:| &j.

Here it has been assumed that n = 5(T (x, y)) and, because of the decoupling of (14),
the temperature has been calculated separately; the quantities A, u, and I/ are assumed
to be constant. (Though the elastic constants vary with temperature, the dependence is
exceedingly weak even over large ranges.) The thin glass sheet is assumed to be stress-free
at y = -k, and to possess a given stress distribution ;¢ as it exits from the furnace. (For
our purposes, the uniformly heated nature of the fabric in the furnace means that we will
normally assume that the fabric is stress-free upon exit from the furnace.) Solving (15), we
find that
Rix, )
R, )’

2 X
ojj = #R(x, Y)fo Aij(§, MIR1(E, y) 4§ + 0y50(3) (16)
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where

R(x,y) =exp (M) ,

2 s
2 Ri(x, ) = exp (i@(x—y))

U

Q (x ¥ ) = -
* 2(x, y)

We now subject the first equilibrium equation to a thin-layer analysis. Since the effects
of introducing thin-layer scalings are rather obvious, we dispense with a rigorous non-
dimensionalization of the equations. By scaling y and v with the small parameter € = i/L
and using (17), the first equilibrium equation (assurning oy;0 = 0) becomes

2 x 172 x
[#R(x,y)f Au(E,y)R1(§,y)d§] +- [—“’R(x,y)f A12(E,Y)R1(§J)d§] =0.
o . €LU 0

¥

Inspection of the terms contained in elements of A shows that every term in Ay 1s order
one in #, v, and their derivatives, while it is clear that in Az the dominant term is wyy,
which is of order ¢! Thus, to leading order,

[R(x,y> fg by & RIE, y)ds] -0, an
¥

We assume that this forces u,y, =0 By symmetry, this implies that

ux(x, y) = Ay(x),

50 that, to leading order, the horizontal strains are functions of x alone. It is worth noting
that there are alternatives to this assumption; for example, if #xyy = F(x)Qxy, where F
is arbitrary, then (16) would also hold. Space does not permit a full discussion of these
solutions, but they are not physically relevant and are therefore rejected.

Having effectively solved the first equilibrium equation to lowest order, we now turn to
the second Examination of the terms in the tensor A;; shows that, when the variables are
scaled, the equation becomes

2 X
[?“R(x, ) f AnE, YRIGE, y)df;} =0
0 ¥

to lowest order, Using the fact that o3p = O at y = *h, we conclude (using (15)) that
Az = 0 and thus, after simplification of Aja,

vey + Ba(x, Y)uy = Balx, ),

where
_ MwGBA4+2u)
T Ut

2 U T—Tg] AU 3542
Bi= —* (@r+2 “r Y .
YT U0+ 2w (( 2 [2;;, R ] 2 ( 67 ) ”")
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Setting B3(x, y) = Bsy(x, ), say, we find that
X
vy = e~ BsxY) fﬁ Ba(k, 1)e® €N dg + vy0(») exp(Bs(0, ) — Bs(x,y)).  (18)

This result allows the dominant stress 1] to be determined. After some simplification, we
find that

3A+2u(u
11 =

A+2u %Uy

The stress in the glass sheet is thus determined using

U
— [l [ETX + A, (19)

+ — A}
A4+2u)

T-T1R], n, +2U(A+,u)
30

R(x,y)
R(0, y)
and all that remains is for the as yet unknown function Ao = uy to be found.

Ag may now be determined by assuming that, since there can be no net tension or com-
pressicn acting upon the glass fabric sheet, the quantity

on = —ch » [ An(, YRIE, y) & + o0 20)

It
f oudy @1

must necessarily be zero, If the glass was being pulled with a net tension, (as in the process
of glass fibre drawing, for instance) then naturally (21) could be assumed 10 be equal to the
pulling tension. For the process discussed here, this tension is negligible compared to the
stresses present in the glass. We shall also assume that this ‘zero net tension’ condition is
equivalent to

B
[A11dy=0, 22)
—h
and thus
k
1A Uy 4hU (A + 1) "
— B A + A =0, 23
fhn(x S RAERACRET °”fhn(x » T Grrze foW @3
where

f 5!”(Jc,y)—TRd
n{x, y}

It is worth mentioning that, on purely physical grounds, the truth of (22) seems plainly
evident. Nevertheless, we have not been able to prove (22) rigorously from the zero-
net-tension condition If it was the case that # varied only slowly with T, then the near-
independence of T on y would make 7 nearly independent of y, in which case (22) would
follow from (21) on using (15) For molten glass, however, the strong dependence of the
viscosity upon temperature rules out simple arguments of this type

We may now use the expression (18) to show (the algebra is tedious but straightforward)
that A, (x) is determined by the integrodifferential equation

h
By(x) = Uaefh To(x, y)dy — uoeef

AL+ D1 () A )+ fo Dax, E)AL(E) dE+ fo Ds(r, ) A (E) e+ Da(x) = 0, (24)
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where
nBr+2p) ' dy
Di(x) = ,
) =200+ w S Gy
A(3X 4 2u) h o—Bs(x,y)aBs(.7)
Da(x, §) = ——=r # dy,
120U+ wG+2m) oy 7, )
230 4+ 2u)? h g—Bs(x.y)eB5.y)
Ds(x,§) = ot &,
36hUZ (M 4 (A +2) Jop n(x, yn(E, y)
(BA+2p) i
Da(x) = ot 2T By — By,
60) = s [ 5 B — B
k
By(x) = f MeBs(()‘y)e—Bs(x,y) dy+
—i (X, ¥}
Eae f" L —Bs(xy)fx(U — T@,y)—TR) B
¢ ' —Te (&, y) + ——=——— | eV d dy.
U —v) Js nx, ) b \Za REN T 6 dg dy

In principle, the problem is now completely solved for arbitrary temperature distribu-
tions and viscosity—temperature relationships. The equation (24) is solved for AE, {x), this
determines vy from (23), and the stress o7 (x, y) is calculated using (19) in (20).

5.1 Special cases of the general result

The analysis above has shown that the complete problem may, at least in theory, be solved.
The analysis involved for the most general case is formidable, however, and for the pur-
poses of the present study we will be content to determine qualitative results by utilizing
some special cases of the general theory.

Thermoelasticity in the limit n — co.  The pure thermoclastic problem may be examined

by formally considering the limit  — oc. In this case @ = 0, and hence {, and therefore
R and Ry, are all constant. Thus (20) gives, for the case when there is no stress at x = 0,

2 X
o1 = “5[0 Ay, y)dE.

Assuming that vo(y) = 0, we further find that By = Bs = 0. Using the definitions for B4
and vy in (19) shows that

Ay [20: + W AG — e GA + 20T,

=A+2,u

where Af, = uy. Imposing the condition that

h
thu(x,y)dy =0
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now shows that

| Uae(3\+20)

1 h
A= ——m————— | — Te(x, yydy — T (x, ,
1 A2 [Zh f_h (x, yydy — Ti(x )J)il

and, assuming that at x = 0 the glass sheet is completely stress-free and that the tempera-
ture is uniform as a result of the furnace heating, we find that

Ea. [1 "
o [_L HLyNy—T@Jﬁ, (25)

o1 = n
where E = (34 + 2u)pt/ (A + 1) and v = A/2(A + ) are Young’s modulus and Poisson’s
ratio respectively

The expression (25) has been derived before (see, for example Adams & Williamson
(1920a,b) and Guillemet (1990)) For a typical temperature profile in the current case,
where the glass fabric sheet is hottest at its centre and is cooled rapidly at its surface,
(25) predicts, as might be expected, o)y < 0 (compression) near the centre of the sheet
y = 0 and o;; > O (tension) near the surfaces of the sheet. Although (25) may, for a
given temperature field, provide approximate results for the evolution of the tension and
compression within a glass fabric sheet, it is clear that, when the cooling process is finished
and the sheet is uniformly at room temperature, the stress given by (25) must be zero. Such
a simple model is therefore quite incapable of predicting permanent stresses.

The simplicity of the formula (25) is appealing, and because of this attermpts have been
made to modify it in ways that allow the prediction of permanent stresses. Bartenev (1948)
suggested that (25) be modified to read

EFo. 11 k
T [ﬁfo 4>(x,y)dy—@(x,y)],

a &)
dr  Ldx |yog,

and Tyf is the ‘glass freezing’ temperature. Although this modification (and others) have
given results consistent with experiments in some instances, in other cases agreement has
been poor. Such models must clearly be regarded as unsatisfactory in that they neglect the
viscosity of the glass. Since the strong dependence of this quantity upon temperature is
one of the principal reasons why permanent stresses may be created, some attempt must be
made to include flow effects into the stress model.

o111 =

where

Thermoviscoelasticity with constant viscosity. 'The case where viscoelastic effects are in-
cluded may also be dealt with relatively easily when the viscosity # is constant. Using the
theory developed above, we find that in this case

LA +20) [ By [x B } Do (3h+ 28) .
Sk s e Bk, yyebs@r dg | - A T M ey
et |© | Jy HEVTTE O+ 200

1
Ad20

Aq

(;”—nm F A+ 2U G+ M)Ag) ,
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where
3A+2
Bsry = LEAF 2
3nUQG +21)
21 AU 3x 420
Bi(x, )= ——— | (30 +2 T — 2 A — ALt
o) = g gy O+ o = = () )

T*(x Vi laog

and Ay = u.. The function Aj may be determined in the usual way by insisting that

7
fh App(x, v)dy =0.

This gives
Ay = w;‘(——‘f—:}ﬁe"gsm [0 T B [T*(s, ) — % _’; T*¢,7) dy} s+
IE_OCZ [5% j_z T*(x, y)dy - T"(x, y)] ,
so that finally
o = %" exp (_g_f?) fo " At yexp (l’j—i) dz, (26)

where Ay; and T* are as given above. This result does not appear to have arisen in the
literature before, and we use it to make comparisons of various cooling schedules below.
The expression (26) provides a complete solution for the thermoviscoelastic stresses in the
constant viscosity thin-layer problem, and may therefore be regarded as a generalization
of (25). Although use will be made of this expression to predict stresses during cooling,
we note that (26) suffers from an identical limitation to that of the formula (25), namely an
inability to predict permanent stresses. To see this, we note that, whatever the structure of
Aj1, the solution of (15) will be given, in the constant-viscosity case, by (26). Because of
the total-stress condition that has been imposed upon o1, it is inevitable that Ay — O as
x — oo The negative exponential in (26) therefore ensures that o1; will decrease to zero
asx — o<,

On physical grounds, this conclusion is not surprising. We may expect that, in order to
create permanent stresses, changes in viscosity are necessary. A brief examination of the
paradigm problem

do(x)
dx
where g(x) — Oas x > 00, shows that, for constant f(x) > 0, it must be the case that

a(x) - 0asx — oo If f(x) — O faster than 1/x, however, then it is easy to see that,
when (say) g{x) is a negative exponential, solutions where o is finite at co are possible.

+ fx)o(x) = g(x),
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Thermoviscoelasticity with temperature-dependent viscosity.  Although, as noted above,
the problem may be solved for a fully temperature-dependent viscosity, the associated
integral equation must be solved numerically. The details are complicated and the resulting
stress formulae are most unwieldy. For practical purposes, a compromise may be made
by assuming that the viscosity, though temperature-dependent, depends only upon x. The
asymptotic temperature distributions that will be derived below for the glass fabric after
it leaves the furnace confirm that this is an extremely good approximation for all but the
smallest values of x.

With this assumption, the derivation of a formula for the stresses is similar to the case
considered above, but now (assuming vyo(y) = 0} we have

X
R I

where
x
Bs(x) = p(3A +2u) d§ ,
3UAA+2u) Jo n(8)
2u . AU, (32
=TT A ——Ag— A
B ) = oo [(3x+2u)ae'r 2 T ) %)
U 1
T* =—T+—T-T
(x, ¥} o x+ 2n(x)( R)
The final expressions for the stress are then given by
P . S [Fe=o e - o "1 »ey|ae+
’ 6U n(x)(1 — v)? 0 ’ 2h J_p '
Eae [ 1 [
— ™ dy —T* ,
Ty [2!1 L; (x,y)dy (x,y)}
_ X
o = Lexp (-——%’i‘ag—(-x—)) [ Au@,y)exp(z“ g(g)) & @
where
Ox(x) = 00

The expression (27) may be evaluated without too much difficulty to determine the
stresses when the viscosity is a given function of x; it is worth pointing cut, however,
that for a typical exponential viscosity (such as the one used below) some care is required
if the integrals are to be evaluated accurately.

6. Determination of the temperature distribution in the fabric

The stress calculations discussed above assume that the temperature in the fabric is known
To determine 7', a number of assumptions must be made concerning the nature of the
cooling experienced by the glass fabric as it leaves the furnace. Although many different
regimes are possible, two cooling programmes are discussed below.
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6.1 Cooling from room temperature

The simplest (but crudest) model for the cooling of the glass fabric assumes that the fabric
emerges from the furnace at a temperature T, (which we expect to be close to, but not
necessarily equal to, T¢) into an environment which is largely at room temperature Tp.
Some explanation of the assumptions that will be made is helpful: because of heat losses
from the gap in the furnace through which the glass exits, it is inaccurate to make the simple
assumption that 7 = T, immediately upon exit from the furnace. Instead, we assume that
the ambient temperature is given by

T =T, — (Ty — To)e %et/Le, (28)

where k. 3> 1 and L is a length scale to be defined. The cooling problem in the glass,
assuming Newton cooling at the surfaces of the sheet, is thus

pepUTy = (Tex + Tyy)
with
T=T, (x=0), T,=0 (y=0),
and
Ty = B(T — Tp — (T, — Tyye = ey (y =h),

where § (units m™") is a heat transfer coefficient. By non-dimensionalizing by setting
x = L%,y = hyand T = Ty + ¥(Ta — Tp) and immediately dropping the bars for
convenience, the problem to be solved is

Lk B2
Yx = W (E'g_'f}'fxx + 1,lfyy)
with
=1 (=0, Y,=0 @=0),
and
y = hB(¥ —e ™) (=1

Examining the sizes of the non-dimensional parameters involved, we find that (using
standard values and L. = 0.6-—the latter value for reasons that will be explained below)

Lek
pepUR?

1
~ 330 ~ p (say),

thus defining a small parameter €, while
BB = 1078 = ge,

where g < 0is O(1). By ignoring the term multiplied by h? /L2, the equation may therefore
be cast in the form of a perturbation problem by writing

Yr =Yy, Yy =qe(¥ —e) aty=1
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Seeking a regular perturbation solution ¥ (x, y) = Ag{x) + €A1(x, v) + €2 An(x, ¥+,
we find that
qe—kcx + kee?*
Ag = ——
g +ke

*

yzkcq(eqx _ e—kcx) gx
A= + 5
2(g + ko) 6(q -+ k)

To derive these solutions, use has been made of the fact that ¥ = 1 at x = 0. For small
x, the term 1, cannot be ignored, and a boundary layer is present However, analysis
shows that the outer limit of the inner solution is simply ¥+ = 1. In dimensional variables,
therefore,

[e‘kc" (3q + ko) + ¥ (2xg® + 2xkeg — 3g — kc)] )

(eqx/Lc — e—kI/Lc)+

—kx/L¢ k gx/L¢ k 2
T=Tb+(Ta—Tb)[qe e ( 2y

q+k 2h%(k + q)

qx
6L2(g +k)?

It is worth noting that, when the ., term is neglected, the equations may be solved
for arbitrary ¢ by transform methods. Although the method is elementary, the resulting
solution is unwieldy. The full problem may also be solved numerically with litile difficulty
using standard methods. Some simple comparisons show that (29) provides an extremely
accurate approximation to the exact solution for all but the smallest values of x.

(Lelk +3q)(e™ e —et*/1) 4 2x9(q + k)eq"”““))] e

6.2  Amelioration of cooling by the insertion of metal plates

As will be seen in the next section, the stresses that result from plain Newton cooling as
described above are unacceptably high, and lead to a product that is of a lower quality than
that desired. Obviously the quality will be improved if the cooling can be performed more
slowly. One cost-effective way to do this (the economic constraints of the factory render it
essential that no extra expense is incurred, so that the addition of elaborate heating fans and
the like is not a realistic option) is to attach metal plates in contact with the top and bottom
heaters that extend past the foundation bricks outside the fumace. This effectively shields
the glass fabric from the ambient conditions ocutside. Experiments carried out at the factory
have shown that to a good approximation the metal plates may be assumed to produce an
effective linear ambient temperature distribution, As far as the fabric is concerned, there-
fore, at x = 0 the ambient temperature is T,, while the ambient temperature has dropped
linearly to Ty, by the time the fabric comes into contact with the first downstream roller
(x ~ 60 cm).

Proceeding using the same degrees of approximation as for the Newton cooling case
considered above, we find that the equivalent formaula to (29) is

1 2t
7= Tt [‘ ~Lratew(E) e [(‘“”‘P (£)-1) (%r - 5) *
qx qx
3L, oP (Lc)” G0
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Once again, the problem may be solved in closed form in an elementary manner using
Laplace transforms. However, the solution is unwieldy and complicated. It may easily be
confirmed that (30) provides exceedingly accurate approximations even a few millimetres
away from x = 0.

7. Stress predictions for different cooling regimes

Now that the temperature distribution in the cooling glass is known to a good degree of
approximation, stress predictions may be made using (25), (26), and (27). A key component
of the prediction method when fluidity effects are taken into account is the provision of a
suitable viscosity law for the glass. Detailed viscosity experiments have not been carried
out by the Valmiera factory, and so we must rely upon values given in the literature for
‘similar’ products. Inevitably this will involve the use of some sort of average; for the
results shown below we have used a combination of various laws proposed by Bansal
& Doremus (1986) for the viscosity of KG-33 Borosilicate, EZ-I Aluminosilicate, KG-I
Alkali-lead, and R-6 Soda-Lime. The formula used is

2
n=0.138 x 1077 exp (%) , (3D

where 7 is measured in Pa s and T in K. Without detailed experiments, an average of this
sort is probably the only practical way of proceeding, but a glance at the coefficient and
exponent used in (31} confirms that extreme sensitivity to temperature is present. Because
of this dependence, separate results (not shown below) were also calculated using different
viscosity laws. In each case the magnitudes of the predicted stresses varied (in some cases
by fairly large amounts) but the trends and general conclusions suggested by the results
given below were confirmed. Tt is also worth pointing out that, as might be expected, (31)
is an ‘Arrhenius’-type formula. It is therefore possible that the stress formulae may be
further simplified by using high-activation-energy asymptotics. This approach has not been
pursued in the present work.

A brief comment is necessary concerning the value of k¢, whose reciprocal characterizes
the distance over which the ambient temperature outside the furnace is influenced by heat
escaping from the furnace. A number of results were computed for various different values
of k.. They were virtually identical for all k. that exceeded about 50, thereby confirming
observations from the factory that the region of influence is very small For all the results
computed below, a value of k. = 100 was therefore used.

The only other ‘experimental’ parameter that needs to be prescribed before stress calcu-
lations can be made is the heat-transfer coefficient g No experimental data are available
from the factory and it is evident that—since, in reality, g probably has to represent the ef-
fects of laminar, transitional, and turbulent free and forced convection effects-—theoretical
attempts to determine values for it are likely to be doomed to failure. Various estimates are
recommended in the literature, most sources simply citing a range of possible values Hol-
man (1976} is typical, indicating that g lies in the range —20 < g < —1/3 for *forced air
convective cooling’; other similar heat-transfer texts give comparable but varying values.
Accordingly, the results documented below have been calculated using values of g such as
—1 and —5. Further results given in Fig. 7 confirm that the general conclusions regarding
the effect of adding metal plates to the process remain unaltered as g is varied.
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F1G 5 Surface stresses for Newton cooling for infinite-viscosity, finite-constant-viscosity, and temperature-
dependent-viscosity models.

For each of the sets of resulis shown below, only the surface siress has been displayed.
Examination of each of the formulae (25), (26), and (27) reveals that, because of the defini-
tion of T'*, the centreline stress may be calculated simply by multiplying the surface stress
by a factor of —1/2. et

Figure 5 shows three sets of results which are indicative of the sort of predictions that
the simplified models are capable of. In each case the surface stress oy (x, /) is shown
for the Newton cooling regime where the ambient temperature is given by (28) Values
of k; == 100 and g = —1 were used. It is generally accepted in the glass processing in-
dustry that Newton cocling of a thin glass sheet carried out in this fashion nearly always
results in a product that carries a permanent surface compression and centre tension. For
the simple thermoelastic model (7 — oo) where the stresses are given by (25), not only is
no permanent stress predicted, but the signs of the transient stresses are incorrect, casting
serious doubts on the ability of (25) (in spite of its popularity and wide usage) to produce
any useful results. Matters are improved when a viscoelastic formulation with a constant
viscosity (in this case 7 = 10! is used. After a high initial surface tension (incvitable
as the constant-viscosity model is unable to take the increased fluidity of the glass soon
after the furnace exit into account), a surface compression is correctly predicted—though,
as pointed out above, no permanent stress can exist. When the effects of variable viscosity
(defined by (31)) are included, the initial fluidity of the glass prevents high stresses de-
veloping by allowing them to equalize through flow. As room temperature is neared, the
rapidly increasing viscosity acts to ‘lock in’ a surface compression and centre tension, and
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FIG 6. Surface stresses and fabric centre temperatures with and without metal plates (g = —5, temperature-
dependent viscosity}

a permanent stress distribution is set up. We conclude that the inclusion of temperature-
dependent viscosity effects is crucial.

In Fig. 6, the surface stresses predicted by (27) with the temperature-dependent viscosity
given by (31} are compared for Newton cooling and the case with added metal plates. Val-
ues of k. = 100 and g = —35 were used, and we note that with these values it is clear that
the permanent stress distribution in the fabric has reached an amount very close to its final
value by the time the fabric crosses the rollers at x = L. Striking differences between the
two cases are also visible: Newton cooling, as expected, produces a surface compression,
while a surface tension in the glass is produced when metal plates are added. However, the
magnitude of the tension produced in the latter case is substantially less than for Newton
cooling, suggesting that the addition of metal plates is likely to prove extremely beneficial
to the manufacturing process as a whole. Figure 6 also shows the fabric centreline tempera-
tures (broken lines) for comparison, the slower fall of the temperature distribution T,(x, 0)
when metal plates are included being clear

In Fig. 7, results are presented for the case where metal plates are added (the data be-
ing identical to those used for Fig 6) using the stress predictions (25), (26), and (27). The
failure of the simpler models to accurately predict the stresses, especially at the start of the
cooling process, is again apparent. Although (perhaps fortuitously) the constant viscosity
model gives a similar value for the surface tension force at x = L, the simple thermoelas-
tic model once again produces predictions that are unacceptably in error,
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FiG. 7 Suiface stresses predicted by constant-viscosity, infinite-viscosity, and temperature-dependent-viscosity
models for cooling with metal plates (g = —5)

Finally, the results given in the table below show that the results in Fig. 6 are typical of
a general trend. Table 1 shows surface stresses with and without metal plates for &, = 100
and various different values of the heat transfer coefficient 4, the calculations having been
made with the temperature-dependent viscosity model.
In each case, the iniroduction of wmetal plates leads to a significant reduction in stress; for
higher values of the heat-transfer coefficient, the stress is reduced by an order of magnitude.
Though space constraints do not permit their inclusion, many more comparisons of this
sort were carried out, each leading to similar conclusions, The overall verdict regarding
the introduction of metal plates must therefore be as follows,

(i) The introduction of metal plates will lead to a significant reduction in the permanent
stresses produced in the glass fabric It is worth mentioning that, during the course of this
theoretical study, the factory has actually fitted metal plates of the form described above.
Though it 1s too early to tell whether product quality has been greatly enhanced, such an
improvement is anticipated.

(ii) The resultant product is likely to possess a surface tension as opposed to a surface
compression which would arise from pure Newton cooling,

As well as these conclusions, it has become evident that, to make reliable predictions of
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TABLE 1

&11(0.6, k) 11{0.6, k)  |stress ratio|
q (no plates)  (metal plates)

—04  —0.269ES 0.584E4 4.64
—-0.6  —0.736ES 0.292E5 2.52
—08  —1.342E5 0.521E5 2.58
—10  —2.048E5 0.708E5 2.89
-20  —6.242E5 1.150E5 543
—-3.0 —10.549E5 1 166ES 5.05
—4.0 —14.530ES 1 048E5 1386
-5.0 —18140E5 0.905E5 20.04
—100 —32.562E5 0.407E5 80.00

either transitory or permnanent stresses in cooling or annealing glass, it is essential that
thermal, viscous, and elastic effects are all included. Moreover, any successful model must
take fully into account the highly temperature-dependent nature of the viscosity of glass.
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A. Nomenclature table and physical constants

Where possible, typical values of the constants are given. Unless otherwise specified, these
are used in the text.

A Pre-exponential Arrhenius constant (= 1.0 x 10°/sec)
a Distance between fabric and bottom heater (= 150 mm)
a Acceleration

b Body force

¢ Conceniration of oil in fabric {mol/m?)

co Initial oil concentration in fabric (= 28.387 mol/m*)
cp  Fabric specific heat (= 690.82 J/kg/K)

D Width of fabric sheet (= 1.1 m}

¢;; Infinitesimal strain tensor

E  Young's modulus = w34 4 2u) /(A 4+ @)

E, Activation energy of oil (= 160 kJ/mol)

g  Gravitational acceleration (9.81 m/sec?)

G+ TIrradiation of fabric bottom surface

Gy Irradiation of bottom heater

h  Semi-thickness of fabric = §/2 (= 0.1 mm)
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AH Heat of reaction of oil (= 1.207 x 107 J/mol)

A TOR

Radiosity of fabric surface

Radiosity from the bottom surface of fabric
Radiosity from bottom heater

Elastic constant . + 24/3

Fabric thermal conductivity (= 1.38 W/m/K)
Non-dimensional constant for furnace exit heat losses
Gas thermal conductivity {~ 0.0669 W/m/K)
Thermal conductivity of oil (W/m/K}

Length of heated part of furnace (= 1.166 m)
Length of cooling region outside furnace (= 0.6 m)
Thermal expansion constant ¢t (34 + 240)

Net energy leaving fabric bottom surface
Reflectivity coefficient of fabric bottom surface

Gas constant (= 8.31441 J/K/mol)

Reynolds number = LUy /v,

y-averaged temperature in fabric

Temperature in fabric (before averaging)

Room temperature outside the furnace

Final exit temperature of glass from furnace

Final fabric temperature in furnace

Temperature of gas in furnace

Glass freezing temperature

Temperature of bottom heater (= 1123 X)
Temperature of top heater (= 973 K)

Ignition temperature of oil (= 693 K)

Initial fabric temperature (= 303 K)

Reference temperature at which glass is stress-free (K)
Fabric speed in furnace (= 0.33 m/sec)

Air speed (= 0.33 m/fsec)

Typical flow velocity of molten glass

Nuk,/L = Convective heat transfer coefficient (~ 1.3 W/m%/K)
Glass coefficient of linear expansion (= 7 x 107%/K)
Heat transfer coefficient for glass cooling (m™')
Fabric thickness (= 0.2 mm)

Small parameter (may be different in different sections)
Fabric emissivity (= 0.92)

Bottom heater emissivity (= 0 8)

Glass dynamic viscosity (kg/m/sec)

Lamé constant

Lamé constant

Poisson’s ratio A/2(A + 1) (= 0.25)

Gas kinematic viscosity (= 1.2 x 10~*m?/sec)
Fabric density (= 1100 kg/m®)

Qil density (= 1100 kg/m®)
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o Stefan-Boltzmann constant (= 5.6703 x 1078 W/m?/K*)
oj; Stress tensor in glass
g  Non-dimensional averaged temperature in fabric sheet
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