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In classical (single-phase) fluid mechanics, it is a matter of experience that, away from flow boundaries,
inviscid models often give excellent results. For time-dependent two-phase flows, an attractive possibil-
ity is to likewise ignore viscosity in the “mainstream’”’ flow However, such equations are generally not
hyperbolic, and possess complex eigenvalues This creates severe technical difficulties as the initial
value problent is then ill-posed, and serious numerical problems that may render accurate computation
impossible. This ill-posedness has been the subject of heated controversy, but the conclusion is clear:
Doubrt remains over the correct equations even for simple two-phase flows.

Complex characteristics arise as a result of multiphase flow averaging, and the consequent omission
of important physical terms. With care, however, these effects may be reintroduced into the equations.
Using such an approach, the specific case of gas/particulate two-phase flow is considered The aim is
not to propose a definitive, demonstrably “‘correct’” system of equations for unsteady two-phase gas/
particulate flow; the assumptions made are too general and specific cases must be treated on their
individual merits Rather a methodology of analysis is illustrated and qualitative results concerning the
nature of added terms in the equations are obtained The effect of each term and also of combinations of
terms is studied, und general conclusions are drawn corcerning the hyperbolicity of the equations.
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1. Introduction

Two-phase flows occur in many industrial, engineer-
ing, and defense-related processes. Much literature ex-
ists concerning models for such flows that employ av-
eraging to describe the motion. The multitude of
different phasic material combinations that have been
considered using such flow models includes bubbly
gas/liquid flow," stratified and annular gas/liquid
flows,? and particle/liquid flows,* but the two-phase
flows that we wish to specifically consider in this study
are of another type, namely gas/particulate flows In
this instance, the continuous phase (designated phase
1) is assumed to be a gas and the dispersed phase
{phase 2) is composed of solid particles. For the pres-
ent we make no stipulations concerning the number or
size distribution of the particles. This allows us to con-
sider flow problems ranging from the motion of
“dusty’” gases where the particles are negligible in
volume fraction concentration to flows where there
may be areas consisting solely of particies, present in a
conglomeration of some sort. It is perhaps worth men-
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tioning that the original problem that suggested the
need for a study of the present form was the classical
internal ballistics problem of determining the flow in-
side a tank gun (see, for example, Gough and Zwarts®),
Here the solid phase is composed of reactive propel-
lant granules that are free to move around in the flow.
As the flow evolves, the burning grains are trans-
formed into phase 1, the surrounding gas, which is at
high pressure and temperature. Throughout the discus-
sion below, the work will be given a specific context by
referring to the internal ballistics problem. The discus-
sion is, however, of a general nature and the changes
required to treat other gas/particulate flows would be
small. )

A serious problem in the development of continuum
two-phase flow models has been the complication that
in many circumstances the proposed conservation
laws have been ill-posed in the sense that the system
possesses complex characteristics. This fact, which
seems to have been noted first by Gidaspow,” renders
the numerical solution of such problems extremely dif-
ficult.® The numerical assessment of such models was
considered by Stewart and Wendroff.” A common as-
sumption of early two-phase flow models was that the
pressures in both phases were identical. The flaw in
this line of reasoning is apparent when we consider the
flow of gas around a single solid sphere, for example:
The pressure on the surface of the sphere is patently
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not the same as the free stream pressure. Various
“fixes”’ of the standard models have been proposed,
some involving two-pressure models and others more
exotic assumptions. Stuhmiller® included drag and in-
terfacial pressure terms, deriving a model having real
characteristics under certain circumstances, whereas
Prosperetti and Van Wijngaarden® were able to pro-
pose a model with real characteristics using certain
compressibility assumptions. Ransom and Hicks® con-
sidered the Riemann problem at the interface between
the two phases in annular flow and were able to pro-
pose a two-pressure model that included a void frac-
tion propagation equation. This was derived largely
from intuitive physical arguments, but rendered the
system totally hyperbolic. Such models provide partial
solutions to the ill-posedness problem, but suffer from
the drawback that being by their very nature fixes for
specific cases, it is hard to justify them using rational
averaging and asymptotics on generic conservation
laws. Rather, extra equations have been added piece-
meal to ensure real characteristics.

A more general approach was pioneered by Drew'®
and Ishii,!" and developed and refined for two-phase
flow.'>1*4 The general philosophy was to write down
generic conservation laws, carry out the averaging pro-
cesses carefully, and finally propose a model that in-
cluded as many physical effects as possible. Attention
was then focused on the specific two-phase flow re-
gime that was to be studied, and submodels developed
for quantities such as the lift, drag, and interfacial
terms. A careful nondimensionalization was then re-
quired to identify the leading order terms and impor-
tant effects before the final system of “*working™” equa-
tions could be proposed. Although it is undoubtedly
true that this approach to the problem is complicated
and time-consuming, such a method will be adopted in
the present study. To proceed in this way may be
thought of as an acknowledgement that, although it
would be very convenient to write down the correct
terms for inclusion in the model in a more ad hoc
fashion, the problem is just too complicated and there
are too many subtly competing effects to be able to do
this with any guarantee of accuracy.

After the basic equations have been proposed, our
aim is to indicate how the various submodelling tasks
could be carried out, and then to examine in detail the
effects of all the terms on the hyperbolicity of the sys-
tem. In the past such an analysis would have involved
prohibitive amounts of calculation, but the modern
generation of symbolic algebra systems makes the task
a realistic possibility As far as previous studies look-
ing at the effects on the well-posedness of the added
terms in the equations are concerned, only the virtual
mass terms seem to have received much consideration
up to the present time. An examinaition of the effects of
virtual mass was undertaken by Drew, Cheng, and
Lahey.'” Under the assumption that any virtual mass
terms must be objective, a general form of the virtual
mass term was derived. The relevance of such model-
ling to the hyperbolicity of the conservation laws was
not explored, however An alternative strategy for
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considering virtual mass effects in liquid/bubble flows
was considered by Cook and Harlow.'® Their three-
phase treatment divided the flow into bulk liquid, bub-
ble vapor, and liquid associated with virtual mass iner-
tia regions. By this means, they were able to obtain a
form for the virtual mass expression that did not n-
volve any unknown coefficients, while still ensuring
objectivity. The expression is rather complicated,
however, and again the effect of the submodel on the
general system of equations was not pursued. Consti-
tutive relations for the Lift force om the particulate
phase have also been examined'” and details of consti-
tutive laws for some flow regimes derived by other
authors were summarized by Drew,” but once again
no examination of their effects on the hyperbolicity of
the system was undertaken,

1.1. Hi-posedness and nonhyperbolicity

Before proceeding with the development of the gen- »
eral equations, it is worthwhile to briefly detail the
reasons why we consider the presence of complex ei-
genvalues so undesirable. Elliptic equations are known
to describe a wide variety of physical phenomena
(electrostatics, elasticity, steady inviscid incompress-
ible irrotational fluid flow, etc.) with great accuracy,
but invariably in these models time does not appear as
an independent variable. The typical elliptic system
comes about as a result of an evolutionary process that
has reached a steady state; the problem is to determine
this steady state. Suitable boundary conditions nor-
mally consist of the specification of data over the
whole of the boundary of the solution region. For evo-
lutionary problems, the situation is fundamentally dif-
ferent. Time is a distinguished variable that may run
only in one direction (witness the well-known ill-
posedness of the “‘backward’ heat equation) and to
specify any global ‘‘later time” boundary conditions
violates causality in 2 manner that must be considered
unacceptable; information cannot logically propagate
back from the future into the past. This, of course is
consistent with the result’® that a Fourier mode intro-
duced into the solution of a time-dependent system of
conservation laws possessing eigenvalues of nonzero
imaginary part will grow exponentially. Nor is it possi-
ble to retrieve the situation simply by adding viscosity,
for it can be shown'* that for small values of viscosity
there always exist disturbances that exhibit exponen-
tial growth rate, thus tainting the inviscid limit of the
system. Quite apart from this, it is surely not unreason-
able to expect that any viscous system should possess
a consistent inviscid limit.

2. General equations for gas/particulate two-
phase flow and their interpretation in one space
dimension

Bearing in mind the discussion of the previous section
and the general philosophy that we wish to adopt for
the formulation of the equations of motion, we begin
modelling from a rather general viewpoint. This ap-

Appl. Math. Modelling, 1993, Vol. 17, July 339




Two-phase gasl/particulate flow equations: A. D. Fitt

proach is carefully outlined in Drew and Wood.** We
assume af the oufsei that we are interested in each
phase separately, and that averaging will take place
only after formulation of the general equations for each
phase.

Assuming that each phase is objective, so that the
stress S satisfies S(OF) = @S(F)Q7 for all deformation
tensors F, where Q is a proper orthogonal tensor, and
also that each phase is hyperelastic, so that the dissipa-
tion of energy in every part is non-negative for every
cyclic motion and- there exists a strain energy density
function ¥ such that

av
S(F) = p—FT
(F} paF

then it only remains to decide the nature of the phases
under consideration In order to make progress, we
will ignore non-Newtonian effects. Denoting any con-
served quantity by 2, iis velocity by g, its density by p,
its molecular flux by J and assuming that the relevant
source density is given by f, the conservation law for
each phase can be written

%(pz) + Y (pg3 ~ D) = pf )

The generic equation of motion (1) is insufficient to
fully determine the motion because the boundaries be-
tween the two phases are unknown; extra conditions
are therefore required at the phase boundaries. These
take the form of interfacial jump conditions™ given by

fi=lpZ(q—q) +0) Ak

Here g, represents interfacial velocity, f; interfacial
source density, and #; the unit interface normal.

Our development of the equations of motion is very
similar to that contained in Drew and Wood!* (and
other sources) and for this reason we omit nearly all of
the details. After suitable choices have been made in
(1), the equations of motion, written as conservation
laws, and the jump conditions for each conserved
quantity are given by

Mass: 3 =1, =0, =1,., fi= )
p:+ V(@) = pf .. Fni=Ilolg —a) A
(Momentum: % = ¢, J = T,f = f,. f; = f.}
(pg). +V pgg =V T + pf,,
fpi = [(pglg — ¢)) ﬁsﬁ
(Energy:2 =FE,J=T-g - L f=f, q+r.fi=x)
(pEY, +V pEq=V-T-q—0+pof, - q+pr
;= [pE(@~g)+ T ¢g- 0 AR
Here the source terms for mass and momentum are
given by f, and f, respectively (with a subscript i
added for the interfacial terms), T is the stress tensor; E
is the total energy, which is the sum of the internal
energy e and ¢%/2; £is the heat flux term;, ris the heating
source; and x; represents the sum of the interface heat-

ing source per unit area and the interface surface en-
ergy.
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Accepting now that ensemble averaging must be
used to circumvent the difficulty of the unmanageable
amount of interface tracking that would result if we
were to use the above equations for both phases sepa-
rately, we use the three-dimensional ensemble av-
eraging operator!!

i+ A7

e, 1) =—Al—i [ flx, ) dr

Introducing a phase indicator function y, which takes
the value 1 when x is in phase &k and zero otherwise, we
average (1) using the fact that

x:VE =Vt — fVx
and therefore

X VT = Vxuf = IV
since within each phase the average of the derivative
will be equal to the derivative of the average. It is the
second term on the right-hand side of this equation that
will give rise to contributions from the interfacial terms

that will prove to be so important in the modelling. It is
also easy to show that

e + - Ve =0

and probably the easiest way to proceed is to multiply
both sides of the general couservation laws by the
indicator function-and then average the result

The ensemble-averaged system of equations (k = 1,
2) is (see Nomenclature list)

(@Po + V- (@pde) = T + Fe @
(BPd ) + V (@GP T =
V- &ka + &kﬁk)?pk + Mk + f_fkf]-:k (3)
(&p(E, + g/2)), + V_(Jkﬁki (€ + gi2) =
Vo (@Te ge - gk))j' dﬂkﬁ&‘*‘fm_@)
+ G+ W+ Te +Dgs/2 (4)

An averaged entropy inequality may also be computed,
and the interfacial jump conditions emerge after a mul-
tiplication of the exact jump condition by the product
of the interfacial normal and the gradient of the phase
indicator function, followed by an average,

So far, there has been an implicit assumption that all
flow is smooth. As the averaging process proceeds,
however, we have to ask the usual questions about
whether the flow is laminar or turbulent. If turbulent
flow is present, the effects may be introduced into the
model in the usual way by considering the steady and
the fluctuating components of a quantity For simplic-
ity we prefer to group the turbulent terms together as
“turbulent stresses.”” The general procedure is not
complicated, and relies on the fact that, if we write g =
q. + q;. ¢tc., then we find that with suitable definitions

Xszq = Ekﬁkzk‘? kT E/j fe

The superscript Re identifies contributions from turbu-
lent effects. Having defined turbulent averaged guan-




tities (see Nomenclature) we therefore redefine
Tk =T, + T_Re» =4+ gfes e =&+ Efe

in (2)—(4). Mixture equations may also be proposed by
adding the phasic balance equations and applying the
jump conditions. Of course, whether we decide to use
the three-dimensional model above or the mixture
equations, there are still many state assumptions that
must be made to complete the formulation. It is the
content and the reasoning behind these assumptions
that constitutes the challenging problem in two-phase
flow theory; they must include a sufficient amount of
modelling information to characterize the system and
render it totally hyperbolic. .

Further simplifications may be made by using guasi
one-dimensional assumptions. Cross-sectional area
averaging will then allow the equations to be simplified
to a system of conservation laws in one space dimen-
sion. The essence of the quasi one-dimensional as-
sumption is that the cross-sectional area of the channel
that confines the flow varies slowly in comparison with
the radius of the duct, in which case the effects of
varying cross-sectional area may be included in a one-
dimensional model. For any variable f that has already
been ensemble averaged we define

_ i _
qu»—ﬂﬁ[$f@n¢4

1
(pr), + E(Aakpkuk)x =T+ fou
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where A(x) represents the cross-sectional area of the
channel at ordinate x. The key averaging properties
that are needed are explained in detail in Fitt,”” and
amount to the fact that

%ﬁ=<£>
ot at

A’ 1.
q»——;«ﬂ+szJm+ov

LI Y age
Wﬂ—AcN¢+AMUm@

where C is the boundary of the cross-sectional area

©A(x); é,, é,, and &, are unit vectors in the coordinate
directions with x measured axially down the one-di-
mensional channel; s measures arc length; and N =
r- n,, N, = V(1 — NO/'N Here nis the true normal to
the channel wall and #, is the normal to the channel
wall projected onto the (v, z) plane.

Carrying out the averaging and taking the scalar
product of the momentum equation with the unit vec-
tor in the x-direction, we retrieve the following phasic
equations of motion (see Nomenclature list for defini-
tions):

&)

1 | 4
(akpk”k)x + Z(Aakpkuﬁcuk)x - E (Aak(Tk + Tfe))x + Mk + B akwTkW + Mk,Tk + akpkfpk (6)

1
(appler + ffe + M?JZ)): + X(Aakpkukcek(ek + ‘-’fe + ”ifz))x

&

1
= ‘“Z L + Z(Aak((Tk + Tfe)ﬂk =&~ gff))x + G+ Wit appulrg + Mkfpk) + ey + Hisjz)rk )]

Again, an area-averaged entropy inequality and
area-averaged jump conditions could be written down
if we so desired Some comments are necessary con-
cerning the definitions of the variables. Many authors
previously have omitted the profile coefficients in the
momentum and energy equations. The need for these
parameters arises from the fact that when cross-sec-
tional averaging is performed, the product of the aver-
ages is not equal to the average of the products. If it
were, then both C,, and C,, would take the value unity.
These coefficients can have an important effect on the
hyperbolicity of the system. Also, it is worth noting
that our definitions have come a long way from the
original variable definitions. For example, in terms of
original variables even a simple quantity like the axial

velocity is given by

U, = ((}kp_)o(/d‘k)&?pﬁ/ P ed XX A

It is therefore important to remember the precise defi-
nitions of the variables when the real modelling work
begins below

3. The modelling of gas/particulate two-phase
flows

Until now everything we have considered has been
known previously, and it is for this reason that many of
the details were omitted. It does, however, constitute
essential background to the modelling details that will
be considered now. We now turn explicitly to (5)—(7)
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and consider how best to model the specific terms. We
wish to reflect the exact nafure of the flow under
consideration; if we do not make the correct assump-
tions we cannot expect to recover a hyperbolic system

In this study, attention is restricted to algebraic consti-
tutive laws, although there are formulations that in-
clude derivatives and many other effects.?

We begin by making some assumptions (A1-A11):
{(in the déscriptions below, some quantities are ignored
as negligible. In order to be able to make such state-
ments confidently, a full nondimensionalization and
comparison of dimensionless groups is required. Al-
though this is a simple task to carry out, the detajls are
tedious and cumbersome and have been omitted).

Al. First we assume that A{(x) = constant, so that
flow takes place in a pipe of constant cross-sectional
area with axial direction x. The cross-sectional area is
assumed to satisfy LiA 0A/3x < 1 so that cross-sec-
tional area averaging is valid.

A2. As far as the bulk source terms are concerned
we shall assume that f,, = r, = 0Oand f,, = gk
where £ is a unit vector vertically downward and g is
the acceleration due to gravity, Some explanation of
these assumptions is necessary. In the standard inter-
nal ballistic cycle, ignition of the propellant bed takes
place starting from ambient conditions, and all of the
mass, momentum, and heat sources arise from interfa-
cial effects, viz. the gasification of the propeliant The
only exception to this is in the very early stages of the
cyele when (typically) hot primer gas is injected into
the propellant to promote ignition. The mechanics of
ignition will be ignored for simplicity, and it will be
assumed that the propellant charge is ignited by a
raised ambient temperature distribution within the
charge. Gravity has been included because sometimes
the gun tube is at an angle (especially for larger artitlery
pieces) such that |k - ¢, = sin @ is non-negligible. It is
worth making the general point that although such
source terms do not include derivatives of the depen-
dent variables and so cannot influence the hyperbol-
icity of the system, it is nevertheless good practice to
retain them in the equations; under some circum-
stances (which do not pertain here) there is a chance
that to leading order they might dominate all of the
derivative terms, thereby turning a partial differential
equation into an algebraic relationship between the de-
pendent variables.

A3, At present the parameters ay,,, Tey, £i, and &, all
appear in the equations of motion. They arise naturally
from the cross-sectional averaging of gradient quan-
tities. We have already assumed that g, = 0 at the
walls to rid ourselves of some of these terms, and we
shall also assume that T, = {,,. = 0 so that there is no
wall stress and no heat loss. Bearing in mind the fact
that it is known™ that these effects contribute only a
few percent to the overall energy balance inside the
chamber, it seems reasonable to dispose of them now
and simplify the model.

A4, Next we consider the interfacial source terms. I',
represents the comtribution to the Ath mass balance
equation from the gasification of the surfaces of the
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solid particles as they burn. For simplicity we assume
Piobert’s law whereby all burning surfaces recede at
the same rate (burning by parallel layers). In this case,
there is good experimental evidence® that

I
where

_ moN.h(A (b, + baph)
Alx)

Here m, represents the original mass of solids, p, the
gas pressure, i(A) is an order unity nondimensional
function of the propellant form function, which relates
the fraction of burning surface remaining to the frac-
tion of the charge mass burnt, b, and b, are known as
the burning rate constant and the burning rate coefil-
cient, respectively, and £ is the pressure index, found.
experimentally to be close to unity N, is the number of
solid particles per unit area, and in practice the easiest
way to keep track of this quantity is to write down a
separate conservation law of the form

Nop + (upN2), =0

Because this equation separates out from the rest of
the system and has no effect on the hyperbolicity of the
system, we shall assume that N, is given. Some model-
ling is also required to determine the interfacial veloc-
ity associated with the interfacial mass source term.
For solid particles, it is usual to write

Uy = Uy (k=1,2)

though if the flow is not highly dispersed this may not
be very accurate. Similar reasoning leads to the ap-
proximation

€ T €2

AS. Clearly there will be mass and momentum con-
servation laws for both phases, but the status of the
energy balance law for the solid phase requires some
examination. Because the solid phase is assumed to be
composed of incompressible particles, we assume that
an energy balance equation is required only for the gas
phase This point of view has been contested in the
past by Krier et ai.”® and offman and Krier,?* who
proposed mixture equations using ad hoc arguments.
However, their equations suffer from the defect that
they have no steady state solution in which the void
fraction is a nontrivial function of x.

A6, Next, we must determine the stress tensors and
interfacial source terms in the momentum equations.
We recall that by definition

Mk=“T VXks Tk—ﬁ"/ak

the first term arising because of the interfacial terms
imtroduced by the averaging. Assuming phase ktobea
viscous compressible gas, we find that

T= —pl+2ur;

1/aq;, dg; 1
(TU_TH__(ﬁ+_ff;)__5ga_qg
2\9x; ax; 3 "ox,




From the definitions we see that

M, =pl-Vx, —2ur Vy.

and at this stage it is normal to separate the interfacial
pressure and shear stress out from the local interfacial
effects by writing

ﬂk=§ksm“2#ﬂz‘m+ﬂi=
PV — 2utyVa, + M,
where the term M| represents the added interfacial
forces. Cross-sectional averaging then yields
M= ) e, =
PV - e — QuFNaT) e + M,

where M} = (M}) - e, and the traditional next step'' is
to assume that

D1V = pufVaw
reflecting the fact that the averaged pressures do not
change very much over a cross-section of the flow. As
far as the interfacial shear stress is concerned, proba-

bly the best we can do is to introduce a profile parame-
ter C,,, a function of the void fraction, and write

<2M1Tp’cxva_k) g, = ZP,C“((I)'TkW/D

where 7, is the wall shear stress, so that for a constant
cross-sectional area

Mk = Pkl’% - 2.“"CSS(a)Tkw'ID + M;c
X
To calculate T,, we note that
T o= xl(—pDia, + 2ury /&,
= —pp T (Vg + Vg*) — 2u(V - PI3)x )/ &,

The shear stress can be averaged' by introducing the
kinematic viscosity v = p/p and using the fact that

XPVq = Gp Vg — V(@GP NT — G
so that averaging yields

&l, = —@pd + 2ud,
where
2p@T = vl @p Vg, + (V7))
+ (i — T V(P + V(@) — Trd)
— Hao(Vg) + V(@p )@ — 1))
Thence
oIy = —opp + 2peym

where 7, = {T,) e, e/a,
For our purposes, the gas phase is phase 1, so that
we have

d
M, = put — 2uC,(@)m/D + M.,
9x
o) = —ayp; + 2peyT
The jump conditions give M, = —M,, and assuming

that phase 2 is dispersed in the form of distinct “*blobs™’
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within phase 1, the easiest assumption to make is that
the stress tensor within phase 2 is given by

T,= —psl

where p, is constant for each particle, which is tanta-
mount to assuming that the elastic forces acting on
each particle are not sufficient to produce any elastic
deformation.

We must also consider the roles played by in-
terparticulate collisions and intergranular (particle/
particle) stresses in the solid particles that occur when
they are close packed. Experience shows that a typical
bed of granular propeliant exists mainly in one of two
states; either it is close-packed with slowly moving or
stationary large-sized particles that are capable of
propagating stress waves through the bed, or it is
highly dispersed, consisting of fast-moving particles,
which are small owing to the large amount of gasifica-
tion that has taken place. We therefore discount the
effects of interparticular collisions (the particles are
either too small and dispersed or too slow-moving to
exchange appreciable amounts of momentum or en-
ergy) but allow for the propagation of initergranular
stress waves by including an “‘intergranular stress” o,
s0 that

Tz = ""('pz + O—g)l
where

g = picicg (’1— - i) (a; = )

and is zero otherwise. In this simple model, the in-
tergranular stress assumes importance when the bed is
packed closely enough so that the gas volume fraction
is less than some given ‘‘settling porosity” e
(normally taken to have a value of the order of 4/10) In
such cases, stress is transmitted by intergranular stress
waves propagating at an intergranular wave speed ¢;,
which we assume to be constant and known. (There
are more complete formulations;®® these involve the
specification of a partial differential equation for ).
With these assumptions, the solid stress tensor finally
becomes

Ty, = —ay(py + o)

At this point, we will alsc neglect the gas viscosity; if
the problem to be solved involved single-phase flow in
a pipe then the natural choice of model would be an
inviscid core flow, coupled to a boundary layer calcu-
lation at the pipe walls There is no reason to proceed
in a different fashion here, and a nondimen-
sionalization would show instantly that the gas viscos-
ity may be ignored away from the pipe walls.

A7. As far as the pressures are concerned, we as-
sume that p, is related to p,; via some inviscid flow
calculation. In general however, these two pressures
will not be the same. Because the solid particles are
incompressible, we have p,; = p, and because the sohd
needs no surface tension to support its boundary p,; =
P~ To complete the specification of the pressures
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therefore we only need to relate p; and py;. For inviscid
flow with velocity U.. past a sphere of radius a the
pressure on the surface of the sphere has the form*®

Plyoa = P — 30 ULF(8)

where p., and p,. are the pressure and density, respec-
tively, far away from the sphere and 8, is the azimuthal
angle. It thus seems very reasonable in our case to take

pi: = p1— Copauy — Mz)z t)]

where C, is an interfacial pressure coefficient that re-
mains when the 6,- dependence has been averaged
out. For simple shapes, explicit values of C, may be
determined, but if the solid particles are irregular, then
{8) would still seem to be the correct form to take for
the interfacial pressure, though now all we know about
the coefficient C, is that to survive in the equations
after nondimensional analysis has been carried out it
must be O(1). _

A8. We must now consider the terms M, These
correspond in general to all the forces that up to now
have been omitted. Drew and Wood* list a number of
components of this term including a viscous drag force,
a virtual mass force, a lift force, a Faxen force and a
Basset force. Thus

M;=FD+FUM+FL+FFax+FBas

A careful nondimensionalization is needed here in gen-
eral to decide which of these terms are important and
which are not. In this particular regime the conclusions
are fairly obvious. The Iift force acts almost entirely
out of the axial direction, and for solid **blobs’” will be
small anyway. The Faxen force is the additional contri-
bution to the drag that arises from the torque in Stokes
flow,?” whereas the Basset force is a “*start-up”” force.
Both contain positive powers of the gas viscosity and
are therefore neglected. This leaves only the drag and
virtual mass terms. For the latter (representing the
additional drag force from the relative acceleration of
the phases), the relevant force component F; for a solid
body in a statiopary fluid i

Fi= —p.VoCylUs,

where V,, is the volume of the solid body, U, is the jth
component of the body’s velocity, C; is the tensor
coefficient of virtual inertia, and a dot denotes total
differentiation with respect to time. Accordingly we
use

e, Fo, = C,.malu;, + upn, — (U, + a0 (9

where the o, term reflects the averaging process and
C,.. is a coefficient to be specified, which in general
will be a function of the void fraction. There are many
alternative models for the form of the virtual mass term
and there is some controversy as to whether (9) is
correct; for example, Geurst®™ formulated a model for
bubbly flow using variational principles that has a dif-
ferent form to (%)
The drag is assumed to have the form

e, Fp = Cpayp(u; — Mz)z (10)
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which may be derived from dimensional arguments.
For irregular shapes little is known about the drag
coefficient Cp, save for the fact that it is likely to be a
function of «,, but for the present discussion this is not
a serious problem as (10) does not include any differen-
tiated terms and so will not contribute to the hyperbol-
icity analysis of the system, Having specified M, the
averaged jump conditions imply

Afr — __Af! .
Mi-e,=—M;- e,

so that M; = —AM3.

A9. Tt remains to make some assumptions concern-
ing the energy equation. The interfacial work term W,
can be dealt with by introducing the mterfacial veloc-
ity.' It is then possible to write

W, = —pua, +plg—q) Vx
+ P VX, — TV,
The interpretation of some of these quantities is diffi-
cult, but neglecting viscosity again, assuming that the

interfacial velocity is given by u,, and also that the term
{plg — g9 Vx is negligible, we find that

W, = —pua, + Miu,

We must also consider the interfacial energy source
and energy flux terms; evidently the former will be
small compared with the energy source arising from
the burning, so that we may take G, = 0, The axial
energy flux term may be modelled by assuming that

L= az(ull — u)’d;

where d, is a laminar energy friction factor.

Al0. Inevitably the turbulence assumptions are
some of the hardest to feel confident about and clearly
more work is needed here. However, for definiteness
we make specific assumptions.

Drew and Wood! cite a number of possible models
for the turbulent contributions to the stress tensor, the
simplest of which amounts to

TS = proopi(uy — P and TEe =275
M

s0 that the dispersed phase is assumed to follow the
motion of the continuous phase closely. The quantity
¢,1s assumed to be available from experimental results
{(see section 4.2). The turbulent energy flux can now be
modelied by the standard Reynolds analogy This as-
sumes that there is complete analogy between the
transport of momentum and the transport of heat. Al-
though this is one of the oldest and simplest theories
for turbulent heat transport, it has been used success-
fully for many years and is known to be acceptably
accurate for core regions of flow. Although under some
circumstances modifications are necessary o model
the turbulent heat transport in wall regions, we do not
consider these complications here and simply write

dx
where d,is a turbulent energy friction factor and k5 is

g’?e = dyopp(uy — u T — Tp) + kge




a turbulent conductivity. We also assume that e5° = 0,
and; because we have ignored viscosities, it is consis-
tent to take k¢ = 0.

All. Last of all, we must consider the profile coeffi-
cients. The practical difficulties of proposing a theoret-
ical model or undertaking experimental measuremenis
of these coefficients have meant in the past that virtu-

(aypy); + (i), = m
(apa)y + (0ppous), = —1h
(apite), + (alpl-ﬁcu])x t P =
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ally all authors have taken each coefficient to be unity.
In spite of the difficulties of obtaining values for C,,
C,z» and C,; we shall leave them as free parameters in
the model so that their influence on the hyperbolicity
can be examined.

Using the assumptions Al-All, the conservation
laws finally become

—Copy(u; — ey, + (g prop (u; ~ “2)2)x + Comoop[(uy, + wyi;,)
= (g + Upity,)] + ity + Cpoopy(uy — 1) — a;p g sin 8

(ctypatiz), + (IQ'ZPZM%CMZ):: + P = BlCp{u — uz)z]x + (a%.oz‘f)I(M - MZ)Z}x = Compf;, + wyuyg,)

1

i . .
= (U + Ustiz )} — (azplc%aﬁ (_ = “')) — ritty — Cpoapy(U) — )" — aopyg sin 6
X

o, o

(arpie; + M%'Q))r + (a1t Coqle; + u?flz))x + (i), + pray, = Copyluy — M?.)zalr — (dron(u; — uz)S)x
+ (it Doy — 1)), — dlonp(u; — u)(ey — T)), + ,C 000, [uy, + uyay,) — (ug, + upu,,)]

where o, + a, = 1 and p, is a given constant. The
system is closed by selecting the relevant constitutive
equation for the gas. In this case the perfect gas law

__ P
oy — 1)

has been nsed, where vy is the usual ratio of specific
heats, which we regard as being given; other constitu-
tive equations may be used, but complicate the analy-
sis.

This set of equations will be referred to henceforth
as the working model.

€

4. Hyperbolicity analysis of the equations

The hyperbolicity of the working model can now be
analyzed. It should be emphasized that in order to ac-
complish this task in any reasonable length of time, a
symbolic manipulation package (MAPLE was used in
the calculations reported below) is essential. Indeed, it
is fair to say that before the advent of such algebraic
computation systems, the calculations below would
have been virtually impossible to perform.

The task is simply stated, but in practice the sym-
bolic calculations required are large. The free parame-
ters in the model are the profile coefficients C,,, Cz,
and C,,; and the modelling parameters are ¢, C,, C
¢y, 47, and dy, numbering nine in all.

The complexity of the system renders it unrealistic
to expect to be able to perform a complete analysis,
and we make no pretense of doing so. Rather the
objective is to try to get a feeling for how the individual
terms contribute to the analysis, and the nature of the
qualitative changes in the hyperbolicity of the system
that they may expedite. For a specific study, much
more reliance would have to be placed on relevant

LR

+ Cpoapiti(it; — 12)* — ytd1p1g SN B + rir(e, + u3(2)

experimental results and correlations for the sub-
models.
Writing the working model in the form

w,+ Aw. = b

where A is a 5 X 5 matrix and w is the vector of
unknowns (@, p;, €, U4y, U)’, the eigenvalues A; are
determined by solving the quintic equation det(A —
Ady = 0. This was performed using a custom-written
package™ that greatly reduces the amount of tedious
labor inveolved.

4.1. Determinant of the complete system

Performing the operations described above, the de-
terminant of the conservation laws is found to be a
quintic equation, containing 4759 terms, that does not
factorize. However, it is illuminating to consider vari-
ous special cases. The simplest of these is obtained by
settingCy = Co = Cy=land $r=C, = C, = ¢y
= d, = dy = 0, so that all of the added terms are
ignored. The resulting system of equations has been
used many times to study two-phase flow, and may be
thought of as the *‘traditional’ two-phase model. The
determinant simplifies considerably in this case, giving
eigenvalues A = u, and A = yc + u, where ¢ = e; ¥y
— 1) is the square of the gas sound speed and y satisfies
the quartic equation

Y =2V 4+ yAVE -1 — g+ 2Vy - V2 =0 (1)

where V = (i, — u;)/cand g = o,p/a,p,. According to
standard theory®® the discriminant A of the quartic

ax*+ bx* +ex +dx+e=0
is given by
A=P -27F
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where
2
I=ae-b—d+fﬁ,
4 12
;o ace bcd__aaﬁ_c_S_iif

The equation possesses two real and two imag%nary
roots if A <0 0, and either four real or four imaginary
roots if A > 0. With reference to (11), we find that

_Yq
16

A (=27qV2~ (g + 1 - V)

s0 that
A= —(1 -V +g+3g"+3¢")e(V%, @)

where g = 0. Because (11) clearly possesses at least
two real roots, the condition for four real roots when g
>0, V*>0is

V’z ~ (1 + qlfs)s (12)

The cases V = 0and ¢ = 0 must be dealt with sepa-
rately; for g = 0 (no solid particles) we find that (11)
has solutions y = V, V, +1, whereas for V = 0, (11)
has roots 0, 0, =V 1 + ¢ so that in both cases all four
roots are real, These limits are singular ones, however;
regular perturbation expansions show that for small g,
(11) has roots

I S
2 — 4V + 212

.
~2 - 4V —2V?

y=1+ + 0@,

-1+ + O(g»)

gV
V1

so that for any value of ¢ greater than zero (12) applies,
whereas for small values of V, (11) has roots

V= + O(g?)

y=x=Vi+g+ av + O(VH
1+ g '
and
V(1 = \/—q)+ o0V

1+gqg

so that for small V two of the roots are complex for any
g > 0 This suggests thai the worst case, as far as
hyperbolicity is concerned, occurs in the neighbor-
heod of V = 0, a fact that will be exploited below.

4.2. Analysis of the individual effects of the added
terms

We now turn to an analysis of the individual effects
of each of the added terms. Evidently the free parame-
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ters in the model may combine in complicated ways to
affect the hyperbolicity of the model, but it is at least
possible to acquire a feeling for how they each affect
the eigenvalues by considering them one by one,

Fluctuation term. First we counsider the individual
effect of including only the fluctuation term. We find
that the eigenvalues are given by A = y,and A = yc +
1; where y satisfies

Vo2V (VP —1-g+ @+ A)D)

+ y(ZV + gfg(‘I)ra:](R - D -
o,V

- V{1+9+R-— 1))

+ (—V2 - E(R — o yV? + o,RO(1 — ’)l))) =0

&

Here R is the density ratio p,/p, and ® = V?q,¢+. The
discriminant of this expression contains 2583 terms and
50 any inequalities such as (12) are rather difficult to
obtain. Analysis may be performed for small ¥V, how-
ever, and this gives the condition for real roots as

—16(a, — (R — @) — RY(— o R%¢; + R?a;¢7
+ ;R — o \RPpy — 20,R b7 + 20001 + o >
+ RP¢pr — R*¢7 + 2Rd7 — ¢7) >0

For hyperbolicity we therefore require

< Y
O+ R—Rr+ 207

Q

where
Q = —R’¢py + R*¢p7 — 2RPT + o7

This condition sets an upper limit on &, for hyperbol-
icity that depends on the value of ¢, An idea of the
effect of the fluctuation terms can be obtained by using
a particular value for ¢, The values —% and —% have
variously been cited'*! for ¢, so it seems reasonable
totake ¢ = —%. In this case we find that for hyperbol-
icity we require

SR®—2R +1
o<
SR*+ 18R -7
so that for R < —9/5 + 2V29/5 ~ 0.354 the equations
are never hyperbolic For density ratios greater than
this value but less than 0.4, we have hyperbolicity for
any a;, but the allowable range of @, decreases as R
increases, until for R = 1 we must have o, < £.

For the gas/particulate flows under consideration,
we expect R to be quite smail, se that although the
fluctuation terms are certainly beneficial as far as hy-
perbolicity is concerned, the effect is not very impor-
tant in this particular case.

Interfacial pressure term. We now consider the effect
of the inclusion only of the interfacial pressure term.
Now the eigenvalues are given by A = y;and A = ye +
i; where y satisfies




C V2
¥+ 2V(RC, — 1)y* + yZ(R—L
e
RC, RCHV?
+ 2Vy(1 ~ RC2yy2 - RC  REY
251

The discriminant of the quartic is a4 quintic equation in
V2 that has 841 terms and suggests no obvious simplifi-
cation. For small V, however, we can analyze the
hyperbolicity by considering the coefficient of V'in the
discriminant. This can be written as

A= (R — a; — R (ARC, — aiC, — o?
+ a,C, + o, — RC, — RC?

For the gas/particulate flows that form the focus of the
current study we have R < 1, so that the condition for
hyperbolicity for small V is

(—RC,+C, + 1) +a(—-1-C)
+RC(I1+C)>0
The discriminant D of this is given by
D=0+ CHAR*CZ —4RC2+ C,+ 1 — 4RC)

sothat when 0 << R < land —1< C, < 0 Dis always
positive. The region of hyperbolicity has therefore
been extended to include the region

1+ C, +VD

=0, =1
200+ C, —RC)

—RCHV*—2RCV?+ V2 -1+ R —
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)
&y

)+V2(—1+RCS—

RC*yV?*  RC
Coy = RCi*yV2) =0
] 23}

indicating that for small values of V the effect of the
inclusion of the interfacial pressure terms is beneficial .
For large V, it has been shown that the equations
with o added terms are always hyperbolic. An exami-
nation of the term multiplying the highest power of Vin
the discriminant indicates that for small a,, hyperbol-
icity is preserved if
o<l
2R

a condition that will clearly pertain to a gas/particulate
mixture and O(1) interfacial pressure coefficients. We
conclude that the inclusion of interfacial pressure
forces is, in general, beneficial to the hyperbolicity of
the equations.

Virtuzal mass term. To analyze the virtual mass term,
the profile coefficients are given the value one and the
other added terms are set as zero. The eigenvalues are
once again given by A = u, and A = yc + u, where y
satisfies the quartic equation

¥+ TC,) + ¥ (=2V = VC,,(Tay(3 — v) + R(1 ~ y)a) + y (V2 — g — 1 + €, (R(1ja, + 2V3(1 — v a)
+ @ -2V +y2V + C, V(=T — v + Ry — 1 = 2VHa)) + VI(—1 + RC,,fa) = 0

where T'= 1 — R — l/@;. The discriminant of this
quartic has 2556 terms, but an analysis can be per-
formed for the cases of both small and large V. For
large V, either

2 Gy — R) — R)
1+ vC,,(1-R)

;> Chy

or
Cum(’)’(]- B R) - R)
ensure hyperbolicity For typical values of R = £, C

= 4, and y = &, the requirements amount to «, > }or «,

< 3,
For small V, the conditions are slightly more compli-

cated, but the final requirements are that a; < C,,, and

(Comas(R = 1) + Cy, — @)y — RC,, ) AR ~ 1)
+R(C,,, — >0

A general condition for hyperbolicity is simple but
tedious to obtain, but again using the typical values R

= 3 and C,, = 3 we find that the requirement for
hyperbolicity is that either &% << a; <iors < o <3,

a1<C Qf]<

o’

showing that, as in bubbly flow, the virtnal mass
term can improve the hyperbolicity of the system for
small V

Intergranular stress term. When the intergranular
stress term alone is included, the eigenvalues are given
by A = u; and A = yc 4+ u, where y now satisfies the
quartic equation

y4—2Vy3+y2<Va I-g
2“")) +2Vy - V2

2

—a; + o ‘

+ q]u}(l—ﬁ) =0
Qgt Yy

N q“}(a,ao + a; —
Lhilegies)

with M= C]CKOIIC“ For small V the discriminant has the
value
C% ( 7)( ( ¢, c ))2
o, a)gla, R, c,
64 10 %0 Q Ly 1

where g is a quartic in «,. The hyperbolicity condition
is therefore «; <<V @,. Because the intergranular stress
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law applies only for values of o, less than or equal to
a,, for small enough V the equations will always be
hyperbolic if the law applies. For large values of V the
discriminant of the quartic is

—16(— oy, + apcilogey + o — 2ag)

c*aip

so that in this limit the equations are hyperbolic for all
values of ¢,/c provided a; < 2a,/(1 + a,). Experiments
suggest that a reasonable estimate for o is about 5 for
many materials, and hyperbolicity thus pertains for ¢
< % for large V, and so in effect for all V whenever the
stress law applies The intergranular stress therefore
has a markedly beneficial effect upon hiyperbolicity. In
most internal ballistics applications, however, the ini-
tially packed bed is soon dispersed as the solids gasify,
so that the stress law may apply only for a small time
during a typical flow.

Laminar energy friction factor term. When d; alone
is included in the equations, the eigenvalues are given
by A = u; and A = yc + u;. The quartic equation for y
is

3W(U - R
y4—2Vy3+y2(V2—q—~l+(—))
PR
+y(2v+m_:_3—)) + V?(—1+LW) =0
PR 1

where W = Vid,o,(1 ~ e, For small V, the dis-
criminant is
16
_T]Piaz(Plaz + ap,)’
@02

so that the inclusion of this term alters nothing and the
eguations are not hyperbolic.

Forlarge V the discriminant is harder to analyze, but
we can write

A = =3pipiaq + d P\(27p3 + 30p,p, — p1)
+ Py(—9p3 + pi — 11ppt — 29p3p))
+ diPylp, — pi)’

where P, P,, and P, represent terms that are always

positive for y > 1. For gas/particulate flow we always

have p, > p;, s0 A is negative for 4, < 0 and the

equations are never hyperbolic for large V For values

of d, greater than zero, it can be shown that, treated as

a cubic in d;, the discriminant 8 of A can be written as
8= —27(y — 1B, + 3p,%(p7 + 14pip,

+ 81p3)°piptofd
and so is always negative. Therefore the equation pos-
sesses three real and unequal roots. Denoting these (in
increasing order) by d;,, d;, and 4,5, we conclude that
for large V the equations are always hyperbolic when 0
< dyp, < dp << dp,ord;; < d;. In view of these restric-
tions, it seems that the inciusion of the laminar energy
friction factor is not very helpful; however, it would be
interesting to compare experimental results with the
restrictions placed on 4, above.

Turbulent energy friction factor term. An analysis of
the effect of the inclusion of the turbulent energy fric-
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tion factor term d; is rendered difficult by the uncertain
nature of the coefficient—although we have assumed
tacitly that it is order umity, it is not even clear whether
it is positive or negative. References and experimental
evidence are very hard to locate, and so all we can dois
consider a general value of d. A further complicating
fact 1s that, unlike most of the cases considered above,
the resulting quintic eguation does not factorize, so
analysis of the discriminant is prohibitively long, even
using symbolic algebra. A numerical investigation can
be performed without too much trouble, however.
Solving the relevant quintic equation using the NAG
routine CO2AEF, the regions of hyperbolicity can be
plotted for various values of the parameters. Figure I
shows a hyperbolicity map for y = £, R = £, T,/¢c* = 2,
and d; = =% V% is plotted against a; and solid lines
divide parameter space into regions where the equa-
tions are totally hyperbolic (marked ““H™’), and those
where complex eigenvalues exist. A further solid line
(marked ““1.”") is the curve V? = (1 + ¢'®)*, the hyper-
bolicity boundary for the equations with no added
terms. We observe that for positive dy the hyperbol-
icity regiom is increased in extent for V > 1, whereas
for negative d the region splits into two distinct parts
In neither case, however, is the region of hyperbolicity
enhanced for V < 1. Some comments on the values of
the parameters chosen are apposite. In general, the
quintic depends on V, a, v, R, T,/c?, and dy, so thata
full hyperbolicity analysis would require the consider-
ation of six-dimensional parameter space. By choosing
“reasonable’’ values for the parameters that remain
nearly constant throughout the flow, however, we can
reduce the dimension of the problem. The value of v
chosen above is typical for a highly reactive gas/
particulate flow, whereas in reality the value of R nor-
mally varies from R ~ 5 x 107* (solid propellant of
density ~1660 kg/m°, gas at atmospheric conditions) to
R ~ % (gas at a temperature of ~3000 K, a pressure of
~350 MPa, and a density of ~330 kg/m®). The value of
dyis chosen to be either positive or negative, but order
one, whereas the value of T,/c? is chosen simply to be
order one. In fact, this final approximation is probably
the most inaccurate. The solid temperature is deter-
mined by the adiabatic flame temperature,®® which will
be O(10°) while ¢? is usually in the range 10° to 10¢ In
many cases therefore the parameter To/c? may be con-
sidered to be small, and this simplifies the analysis
considerably. Ignoring terms of order T./c? we find that
the resulting quintic equation factorizes, giving an ei-
genvalue y = 0 {in the usual notation) and the quartic
equation
y4 + y3(_2V +' Vd‘razllal)
+y2(V2— P Je 2V2y)>
2504

&

+ y(ZV + Vd (2 + Wy))

oY

+ (—W—ﬁdrvz) =0
ey

ey
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Figure 1

Using the discriminant, an analysis can be performed
for small V, showing that the condition for hyperbol-
icity is
ay(y — dp)(—ayy — ad ) (Ra,
+ a)y —dp) +d’ >0

It is easy to show that for dy > vy the condition for
hyperbolicity is always fulfilled, whereas there can
never be hyperbolicity if y > d; > 0. For d < 0, the
condition is

@y _dr<ﬂ+ﬁ
CEZ -

2% o
A large-V analysis is also possible; the hyperbolicity
condition is

d%(dr =Wy — azdr)3 >0

thus the equations cannot be hyperbolic for d;- > -y, are
always hyperbolic for y > d; > 0, and are hyperbolic
for dy < 0 provided —d; < ay/o,. The large and small V
analyses together indicate that negative values of 4,
are probably more beneficial to the equations as far as
hyperbolicity is concerned.

Figure 2 shows a numerical hyperbolicity map for
the parameters d; = =%, y and R as in Figwre I, and
T,/c* = 0.001. The results of the small T,/c? analysis
are confirmed; for the values of the parameters taken,
(13) implies that for the negative d; case we have hy-
perbolicity if 0:216 < @; < 0.373, although the region
concerned is very small.

Profile coefficients. The effect of the profile coeffi-
cients is somewhat harder to determine than in most of
the cases considered above, as now u. is no longer an
eigenvalue, giving a quintic characteristic equation. To
give anidea of the kinds of results that can be obtained,

(13)
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d'l‘ = =5/7
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Hyperbolicity maps showing the influence of turbulent energy friction factor (y = ¢, R = §, T/c® = 2)

we consider the case C,, = 1, C,, = C,. Setting i, =
¢V, i, = ¢V, R = pi/p,, and A = yc¢, we find that the
resulting quintic depends on the parameters vy, V,, V,,
R, ay, and C,;. Proceeding again by numerical means
for given R, v, and C,;, we have specified V, and
plotted hyperbolicity regions on a graph relating a, to
VA= (V, — V). Figure 3 shows the two cases y = &,
R=1%V,=0.1and C,, = 1.1 and 1.5, respectively.
The value of V, corresponds to a typical order of
magnitude of solid velocity observed in highly reactive
gas/particulate flows. As the profile coefficient in-
creases, the hyperbolicity region becomes larger, and
is extended to include points where both V and «, are
small The immediate conclusion from this limited
study of profile coefficients is that they may have an
important effect on the hyperbolicity of the equations.
It is therefore unfortunate that there are such obvious
practical difficulties in obtaining even the coarsest of
estimates for these profile coefficients.

4.3 More complicated combinations of terms

As yet, we have only considered the effects of the
added terms in isolation. Evidently, it is possible for
them to combine with each other in complicated ways.
We therefore further consider the character of the con-
servation laws for various combinations of the added
terms. Unlike the case when all the added terms are
7ero, the hyperbolicity does not depend only on the
quantitics V and g, but in general on all of the flow
variables, which are themselves unknown. The cases
considered below can therefore give only an indication
of the possible effects of the added terms.

Combined effect of intergranular stress and interfa-
cial pressure. A particularly interesting combination of
terms to consider is that involving the intergranular
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Figure 2. Hyperbolicity maps showing the influence of turbulent energy friction facter {y = 4, 8 = L, T./c* = 0.00%)
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Figure 3. Hyperbolicity maps showing the influence of profile coefficients {y = § R =, V, = ¥5)

stress and the interfacial pressure, as both have been
cited in the past as terms that may render the equations
hyperbolic.®?* In this case one eigenvalue is given by A
= uy, and the other four are determined by a quartic
equation for y in the normal way. Fixing the quantities
R, C = ejle, ay, v, and C, once again allows us to plot
V? against «, to determine the hyperbolic regions of
phase space. Figure 4 shows two such plots; in both
casesweuse y =%, @y =0 5,and C, = —%. Inthe first
of the two figures we assume that the flow is well
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established and again we use the typical values R =
pi/p» = $and C = ¢fc = 1. This value for C corre-
sponds to an intergranular wave speed ¢, = 1250 m/sec
(accurate measurements for this quantity have been
made) and a pressure and density of 334.8 MPa and 300
kg/m®, respectively, which are typical values for an
internal ballistics application. The second figure re-
laies to a much earlier part of the flow, and assumes
that p, = 75 kg/m® and p; = 43.4 MPa. The hyperbol-
icity regions in both cases aré quite different. The
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C=3, R=1/20

Figure4. Hyperbolicity maps showing the combined influence of intergranular stress and interfacial pressure{y =%, 05 = 3, C, = —%).

discriminant of the quartic contains 4299 terms and is a
sixth-order polynomial in V2. The parameter C, does
not appear in the zero coefficient of V term in the
discriminant, however; thus for small V the hyperbol-
icity is independent of the interfacial pressure term,
and the result of 4.2.4 applies. Both graphs confirm
that for small V we simply require &, < 1/V2 for
hyperbolicity

Finally, it is worth making the point that the graphs
in Figure 4 show clearly that, although the situation is
certainly improved for small V by the addition of both
interfacial pressure dnd intergranular stress terms,
their addition by no means constitutes a universal pan-
acea

Combined effect of all the added terms. When all the
added terms are included, the quintic equation that
determines the eigenvalues is too unwieldy to permit a
theoretical hyperbolicity analysis, and we must tumn
once again to purely numerical means. Evidently there
are also a prohibitive number of cases that could be
considered; for brevity only two examples are shown.
Results were generated efficiently using the MAPLE
facility for generating double precision optimized
FORTRAN code. Such a facility is vital as the coeffi-
cients of the quintic eigenvalue equation typieally con-
tain on the order of 100 terms, rendering manual coding
prone to errors.

The graphs in Figure 5 show hyperbolicity maps
with V plotted agamst a;. In both ﬁgures the values C,

= _73'5 Comn=%,v=% oy =%, dr= -4, ¢, = 1250,d,
= 3, and p, = 1500 were used, while in the first graph
the values used were C,; = C,, = C,; = 1, dy = 4, p,

= 100, T, = 2400, ¢ = 1095, and t, = 10 The second
graph shows the case where C,, = C,, = C,, = &

Z 10, U
= -4, p, = 400, T, = 3200, p, = 300, and u, = 1000.

P g = 2,

For values of V less than unity, there is a significant
increase in the area of parameter space, which is hy-
perbolic in both cases, although for values of V greater
than two the hyperbolicity region is actually de-
creased. Both figures provide a graphic illustration of
the complexity of the manner in which the added terms
combine to influence the hyperbolicity. It must be
remembered, however, that to derive these results, we
have been compelled to estimate not only the coeffi-
cients of the added terms, but also some of the depen-
dent variables; there is no a priori reason why the
differential equations should possess solutions that
pass through this region of parameter space.

5. Summary and conclusions

A methodology has been explained whereby the char-
acter of the averaged equations of two-phase flow may
be investigated. The model is based on a generalized
theory for two-phase flow that has recently been devel-
oped and relies on the premise that the equations of
motion can only model physical reality in an accept-
able manner if terms that have effectwely been re-
moved by the process of ensemble averaging are re-
placed by suitable ‘‘added terms.” Although these
added terms greatly increase the complexity of the
equations, if analysis shows that they may contribute
to leading order, thén:they must be retained.
Theoretical and nimerical analysis has been used to
investigate the effect of these added terms on the hy-
perbolicity of the equations of motion, concentrating
for illustrative purposes on a particular gas/particulate
fiow. The analysis shows that, though the added terms
combine in a complicated manner, their individual ef-
fects can be quantified and understood, and, individu-
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Figure 5. Hyperbolicity maps showing the influence of all added terms {C, = ~ %5, o = Ly =t oo = L. ¢7 =—1c¢ =1250,d, = 3, p»

= 1500}

ally or in combined form, on occasions they may signif-
icantly improve the area of parameter space for which
the equations are hyperbolic and may therefore be
solved numerically with some success. .

In general, for specific cases a careful nondimen-
sional analysis of the equations is required to deter-
mine which of the added terms must be retained. When
this has been carried out, the submodels appropriate to
the particular regime(s) that pertain must be consid-
ered. Our ability to propose a rational and successtul
model for each different type of two-phase flow will
depend on the sophistication and accuracy of these
submodels. Most important, the analysis above sug-
gests that it is simply unrealistic to propose a single
simple ‘‘basic model’’ for all two-phase flows, and,
merely by appending a selection of correlations, expect
to recover a set of equations whose solutions mimic
reality to an acceptable degree. The diversity and com-
plexity of two-phase flow are simply too great.

Nomenclature

a radius of sphere

o settling porosity of solid phase .
by burning rate constant

b, burning rate coefficient

B pressure index

¢y intergranular wave speed

C boundary of A(x)

Cy tensor coefficient of virtual inertia
E total energy = e + ¢

€ internal energy

é. unit vector pointing along tube axis
F deformation tensor

f source density
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interfacial source density

mass source term -
interfacial mass source term
momentum source term

interfacial momentum source term
acceleration due to gravity

function of propellant shape

identity tensor

molecular flux

1 (gas phase), 2 (solid phase)
turbulent conductivity

unit vector vertically downward
interface surface energy and heating source
typical pipe length

propellant form function

original propellant charge mass
interfacial mass source term

gas viscosity

normat to channel wall

unit interfacial normal

projection of channel wall normal

R h,

VT~ NN

number of solid particles per unit area
gas kinematic viscosity

pressure

pressure at infinity for flow past a sphere
strain energy density

proper orthogonal tensor

velocity

interfacial velocity

heating source

speed at infinity for flow past a sphere
volume of solid particle

density




g

)

D A *-]E“*Mq no

i

ey M P

density at infinity for flow past a sphere
stress tensor

intergranular stress (nominal loading)
conserved quantity

time

time increment used in ensemble averaging
stress tensor

viscous shear stress

angle of inclination of pipe to vertical
azimuthal angle for flow past a sphere
phase indicator function

position vector

heat flux

Ensemble-avei*aged quantities

X: = volume fraction

pelg — ¢q,) - Vy, = interfacial internal energy

vt 4 &, = turbulent kinetic energy
of .xi/p. = bulk mass source

ef,xdap, = bulk momentum source

£ - Vy, = interfacial heat source

olg — q,) - Vx, = interfacial mass source
—T - Vy, = interfacial momentum source

spg*(qg — q. - Vx, = interfacial kinetic energy

pglg — q,) - Vy, = interfacial momentum flux

— oo, = Reynolds stress

— (T q)- Vx, = interfacial work

448

"é:: pex/ pa, = internal energy
el &

flux

ere

Pt
For

G,

L,

M,

M, added interfacial forces
Ds Dxia, = pressure

P interfacial pressure

g, X0q/ &p, = velocity

A turbulent fluctuation in g,
3g7.1

flux

gy

Fe 7ox/ &P, = heating source
D XA @, = density

T, x. /o = stress tensor
T

Te shear stress

Tt interfacial shear stress
Wy

L v,/ &, = energy flux

‘Re

ik + XU = XaT * Qi + Xeidi*1 2 &
= turbulent energy flux

Cross-sectional area averaged quantities

¢
Alx)

oy

Cperos

cross-sectional area averaging operator
channel cross-sectional area
(@) = volume fraction

_9, 35 i ds = wall volume fraction
44 ) N

(G + T8+ qUD) - eloypan ) =
energy profile parameter

shear stress profile parameter

(OPT i)~ e edeyppui, = momentum pro-
file parameter
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D 4A/f. ds = effective channel diameter {C,,
= perimeter in contact with mixture)
E, e, + ef° + ui/2 = total energy
e, {@p€lcp, = internal energy
€4 {e,;I /T, = interfacial internal energy
eXe (@ p e + ¢ OVap, = turbulent kinetic
_energy
Tt {f.y = bulk mass source
Fot {@pef i eoyp, = bulk momentum source
Fe. Faxen force
Fras Basset force
Fp drag force
F. virtual mass force
Fp lift force
G, (G,) = interfacial energy source
I, (T = mass generation rate
M, (M) e, = interfacial force
M, {M}) - e, = added interfacial forces
Dr {@.p. Vo, = pressure
Dui interface pressure
ry {a.p.Ta.p, = heating source
[ {@ppla;, = densily
T, (T, e, - eja, = stress
= (@ TE) - e, e, = Reynolds stress
Ty ! 35""‘(T* 7) b ds = wall stress
Aak\v c N
7 (7) e, ela, = shear stress
Tien wall shear stress
Uy (@ edop, = axial velocity
w2 (g - T/2)/T, = interfacial kinetic energy
Uy gL e T, = interfacial velocity
W, {W,) = interfacial work
&, heated channel perimeter
& (&L, ' e o, = axial energy flux
Re (@dB — T, q) - e o, = turbulent axial en-
ergy flux
Lo I 56 Gy 1 ds = wall energy flux
gh Yod N

Quantities used in hyperbolicity analysis

I

sound speed in gas phase
virtual mass coefficient

drag coefficient

interfacial pressure coefficient
laminar energy friction factor
turbulent energy friction factor
discriminant of eigenvalue equation
eigenvalue of conservation laws
/o,

pi/p, = density ratio
fluctuation term coefficient
Via,pr

1 =R — le

(u, — w)ic

Vi (1 — yYayla,

DHH

4

(IR
)-.;

T <N eSS >
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