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A mathematical model is proposed for the process of vacuum superplastic forming.
The model exploits the fact that in most industrial applications the sheet aspect ratio
(thickness/sheet width) is small. After an initial consideration of some of the more general
properties and the literature of superplastic materials, the elastic/plastic deformation of an
internally-inflated thin-walled cylinder is examined. Plates of arbitrary geometry are then
considered. A quasisteady model in which the sheet moves through a sequence of steady
states is developed. Some simplified closed-form solutions are examined, but for general
cases a system of nonlinear partial differential equations must be solved numerically. An
efficient and accurate semi-explicit numerical scheme is proposed and a simplified stability
analysis is presented; the method is then used to compute properties of superplastic vacuum
moulded sheets in a number of practically motivated cases.

1. Introduction

Superplasticity in metals and alloys is a phenomenon that has attracted the attention of
members of the scientific and industrial communities for at least 30 years. More recently,
superplastic behaviour has been studied in intermetallics (whose crystal structures and
properties often differ markedly from those of their constituents), ceramics and metal
matrix composites.

Superplastic behaviour is characterized by the presence of very large (plastic) deforma-
tions. Strains of order 2 are typical but in many materials the strain may reach 10 or 20.
(The industry traditionally refers to such deformations as being 200 to over a few thousand
‘per cent’.) This is in marked contrast to normal plastic deformations which typically range
from less than 1 per cent to about 80 per cent. From a materials science point of view the
requirement for superplasticity in a given material is that its grain size is small (typically
less than 10 microns). When this is so, for temperatures of approximately half of the
melting temperature (in degrees C) and for deformation rates of between 10−3/s for grain
sizes of 10 microns and 10/s for 0.5 micron grains (Sherbyet al. (1994)), materials are able
to undergo large deformations without failure. The micromechanical details of exactly how
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superplastic deformations occur are complex. By general consensus, however, the most
important mechanism at work is that the small grain size allows grain boundary sliding
to occur while cavitation is delayed. Void formation and coalescence as a precursor to
microcracking (a typical failure mechanism in ductile materials) is thus avoided.

From an industrial point of view, superplasticity brings several advantages to material
forming technology. The manufacture of complex shaped pieces may be accomplished
with low pressures, without any welding and with minimal or no subsequent machining. As
with any thin-walled structure, the strength and failure load (under buckling, for example)
depend critically on the local curvature and thickness.

The motivation for the model developed in this study arises from the developmental
work of Professor Torres (Instituto de Investigaciónes en Materiales, UNAM, Mexico
City) which has been carried out on two superplastic alloys. The materials used in the
experiments were a cadmium–zinc alloy and zinalco, a 77 per cent zinc, 21 per cent
aluminum and 2 per cent copper alloy developed by Professor Torres and his group.
Experiments were carried out on the behaviour of hemispheric free-bulging from sheets
as well as vacuum moulding in a circular cylindrical mould with a depth between 1
and 1.3 cylinder diameters (giving deformations of approximately 200 to 250 per cent).
The hemispherical bulging may be considered as the first part of a commercial vacuum
moulding experiment where the superplastic has not reached the walls of the mould.

The objective of the current study is to develop a model for simulating the superplastic
forming process which will also predict the thickness distribution. Other questions of
interest are the deflection of the sheet as a function of pressure for a given mould opening,
and the deflection as a function of mould diameter for a given pressure.

We begin by describing the configuration under consideration and the modelling
assumptions that will be made. Consider a flat sheet of metal of initial uniform thickness
d clamped to the edges of a two-dimensional mould (that is, a channel) of width 2a and
depth b (typically d ∼ 0.02a). We assume that the pressure inside the mould is maintained
at P2, whilst outside the mould P = P1 > P2. Figure 1 shows a schematic diagram of the
arrangement. For small pressure differences this configuration has been much studied. It
amounts essentially to a flat plate in which the out of plane loading (uniform pressure) is
resisted by bending stresses (in-plane stresses); the concave surface of the plate is under
compression whilst the convex surface is under tension. This initial configuration problem
may be described by standard linear plate theory, valid when the deflections are less than
the thickness of the plate.

Assume now that the pressure in the mould is further decreased. For the greater
deflections that now result a more refined theory is required. Nonlinear plate theories for
such circumstances are well established (see, for example Green & Zerna (1954)); in the
current case, the out-of-plane loads are carried by in-plane bending stresses in combination
with membrane (that is, tensile) hoop stresses.

Now suppose that the mould pressure is decreased still further. As the deformation
of the material increases, even nonlinear plate theory eventually becomes invalid.
Experimentally, a plastic ‘hinge’ forms on the rim of the mould. Shell theory, in which
a curved geometry can carry out-of-plane loads by hoop stresses (positive throughout the
thickness) is now applicable.

The effect of plastic hinge formation may be understood by considering a cantilever
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FIG. 1. The geometry of the sheet (P1 > P2)

beam under a uniform pressure. At a certain critical pressure plastic zones are formed
at the built-in end. Such zones are created on the top and bottom surfaces of the beam
and are separated by an elastic core. As the pressure is increased the plastic zones grow
inwardly until they meet, at which point the thickness of the elastic core is reduced to
zero. This configuration is normally termed a plastic hinge. It allows unrestrained plastic
deformation that essentially transforms the original clamped boundary condition into a
moment-free boundary condition (see Lubliner (1990)). For the clamped plate, the plastic
hinge also marks the transition from plate to shell theory as the unrestrained plastic flow
allows the redistribution of stresses to a purely tensile hoop stress distribution; in this case,
the out-of-plane pressure loading is resisted by membrane stresses. In general, of course,
one would have to examine this situation numerically to make definitive statements about
the transition of the stress distributions.

After the formation of plastic hinges, the new configuration is that of a curved (elastic)
geometry of uniform thickness and under uniform pressure; the boundary conditions are
zero displacement and moment and are applied at the circular rim. As the pressure is
increased under these circumstances the material adjacent to the concave surface becomes
plastic as the initial yield pressure is reached. Held in place by the outer elastic sheath,
however, it is unable to flow (see Fig. 2). Flow can only take place when the material
becomes fully plastic, which will occur for some higher value of the pressure difference.
For an unconstrained cylindrical shell, once a fully plastic state is established there is no
stable equilibrium configuration for an infinitesimal increment of pressure since as the
shell expands it has a larger radius of curvature, which (as we shall see) reduces its ability
to resist the internal pressure. However, for a shell that is constrained (in this case by the
rim of the mould), if the shell reshapes into a geometry with a smaller radius of curvature
then there is a stable equilibrium configuration even for a shell with reduced thickness (as
an isochoric plastic deformation rule would dictate). It is this concept of a sequence of
quasi-static changes of equilibrium configuration upon which our model is based.
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FIG. 2. Schematic diagram showing the elastic and plastic regions of the sheet for pressures between the yield
pressure (at which a plastic region first forms) and the flow pressure (at which the sheet is fully plastic)

In Section 2 we motivate the asymptotic approximation of a general shell by consider-
ing the simpler problem of an unconstrained circularly cylindrical elastic–plastic shell. This
shows how a plastic region forms on the concave side of the shell and gradually expands to
cover the entire shell as the pressure is increased. In Section 3 we perform an asymptotic
analysis of a general fully plastic shell to identify the equilibrium configurations.

Before proceeding, it is worth assessing the approach adopted in the present work in
the light of other existing models. In most of the existing literature it is assumed that
superplastic material deforms according to a law of the form

σ = kε̇m, (1)

where σ denotes the effective stress, ε̇ is the effective strain rate, and k and m are material
constants. For superplastic materials m < 1 and (1) is conventionally assumed to have been
arrived at by means of a suitable ‘uniaxial stress test’ . The material is therefore treated
as a power-law shear-thinning viscous fluid. With this model, the process of superplastic
forming becomes equivalent to that of glass blowing, though in the latter the fluid is usually
assumed to be Newtonian.

Armed with the material law (1), some authors (see, for example Enikeev & Kruglov
(1995)) simplify the problem by making ad hoc assumptions about the way that the
material might stretch under differential pressure loading, whilst others perform a full
finite-element numerical calculation of the solution in three dimensions (Bonet et al.
(1990), Zhou & Lian (1987), Carrino & Guiliano (1997)). Alternatively, some authors
point out that (1) neglects the elastic properties of the material and include the dependence
of the stress on the strain as well as the strain rate, some even including the effects of work
hardening (Doltsinis (1993), Hu et al. (1997)).

Few authors seem to have made systematic use of the fact that the sheet is almost
invariably thin by comparison to its lateral dimensions. This is in contrast to the case of
glass blowing, for which a simplified model of the evolution of a thin sheet of a Newtonian
viscous fluid has been derived systematically in Howell (1996). The power-law case ought
to be amenable to a similar treatment.

In the present work we aim to distance ourselves from a description of the material as
a power-law fluid, treating it instead as a plastic. Accordingly we suppose that there is a
yield stress, below which the material is elastic, and above which it flows plastically. In
fact (as we shall see), because we will eventually formulate a quasi-static evolution model
where the material progresses through a sequence of steady states, the mechanism of flow
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FIG. 3. Stress–strain curve for an elastic/perfectly plastic material

of the material above the yield point is not of paramount importance. We might equally well
assume that the material flows as a viscous fluid after yield, as in the case of a Bingham
or Herschel–Bulkley fluid. Our approach may therefore be considered as representing the
limiting case in which m tends to zero, where a power-law fluid behaves as though it were
plastic.

We complete this section by stating the equations governing plastic yield. We will
assume that the material is elastic perfectly plastic, so that its stress/strain relationship is
as shown in Fig. 3.

Let the stress tensor of the material be denoted by σi j . This may be written as a sum
of the hydrostatic stress σkkδi j/3 (we use the summation convention throughout) and the
deviatoric stress

σ ′
i j = σi j − σkkδi j/3.

Note that σ ′
kk = 0. The Von Mises yield condition for a perfect plastic material may be

written (see Hill (1950)) as

σ ′
i jσ

′
i j = 2σ 2

Y

3
, (2)

where σY is the yield stress of the material in pure (uniaxial) tension.
Coordinate axes may always be chosen so that the stress tensor is diagonal; the

coordinate directions are then known as the principal directions and the diagonal entries in
the stress tensor as the principal stresses. Let the stress tensor in the principal coordinate
system be denoted by τi j . Then the Von Mises condition (2) may be written in terms of the
deviatoric part of the principal stress tensor (see, for example, Calladine (1985) and Hill
(1950)) as

(τ ′
11)

2 + (τ ′
22)

2 + (τ ′
33)

2 = 2σ 2
Y

3
.

This may be rewritten in many ways. Perhaps the most convenient is

(τ11 − τ22)
2 + (τ11 − τ33)

2 + (τ22 − τ33)
2 = 2σ 2

Y .
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An alternative plastic yield condition is that due to Tresca (see, for example, Prager (1959)),
which is

max (|τ11 − τ22|, |τ11 − τ33|, |τ22 − τ33|) = σY .

In two dimensions τ ′
33 = 0, which implies that τ33 = (τ11 + τ22)/2. Then the Von

Mises condition becomes

(τ11 − τ22)
2 = 4σ 2

Y

3
,

whilst the Tresca condition becomes

|τ11 − τ22| = σY .

2. Circularly cylindrical shell

In this section we consider the problem of ‘ inflating’ an elastic/plastic cylindrical shell by
imposing a slowly increasing internal pressure P . We assume that the displacement of the
material is solely radial. The (equilibrium) equations for the stress then become

σrθ = 0, (3)

r
∂σrr

∂r
+ σrr − σθθ = 0, (4)

with σrr and σθθ functions of r only. Whilst the material remains elastic, the stresses are
given in terms of the radial displacement ur by

σrr = (λ + 2µ)
∂ur

∂r
+ λ

ur

r
, (5)

σθθ = λ
∂ur

∂r
+ (λ + 2µ)

ur

r
. (6)

These equations must be solved subject to the boundary conditions

σrr (a) = −P, σrr (b) = 0,

where a and b are respectively the inner and outer radii of the cylinder. Using the Tresca
yield condition, we also have the constraint that |σrr − σθθ | < σY for the material to
remain elastic (here and for future reference we note that the results for a Von Mises yield
condition may be obtained by simply replacing σY with 2σY /

√
3). Substituting (5), (6) into

(4) gives

r
∂2ur

∂r2
+ ∂ur

∂r
− ur

r
= 0 (7)

and hence

ur = Ar + B

r
. (8)

Imposing the boundary conditions now gives

σrr = − a2 P

b2 − a2

(
b2

r2
− 1

)
, (9)

σθθ = a2 P

b2 − a2

(
b2

r2
+ 1

)
. (10)
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The quantity ∆ = σθθ − σrr is given by

∆ = 2a2b2 P

r2(b2 − a2)

and is largest on the inner radius, where it is equal to

∆a = 2b2 P

b2 − a2
.

The cylinder will therefore start to become plastic when the pressure inside reaches the
value PY given by

PY = σY (b2 − a2)

2b2
. (11)

For pressures above this value the material comprises a plastic annulus inside an elastic
sheath. Let the plastic annulus be a < r < c and the elastic sheath be c < r < b. Then
equations (3) to (6) and consequently (7) still hold for c < r < b, while in a < r < c we
have equations (3) and (4) along with the additional condition that

σθθ − σrr = σY .

Hence, for a < r < c we can integrate (4) immediately to give

σrr = σY log r + C, a < r < c.

Applying the boundary condition on r = a we obtain

σrr = −P + σY (log r − log a), a < r < c,

σθθ = −P + σY (log r − log a + 1), a < r < c.

In the elastic region we still have the solution (8) (with different values of A and B). The
normal stress must be continuous across r = c and the material must be at yield, so that
the tangential stress at r = c is also zero. The normal stress at r = b is still zero. Applying
these conditions gives

2(λ + µ)A − 2µB

b2
= 0,

2(λ + µ)A − 2µB

c2
= −P + σY (log c − log a),

2(λ + µ)A + 2µB

c2
= −P + σY (log c − log a + 1),

for A, B and the position c of the free elastic/plastic boundary. Eliminating A and B gives
the following transcendental equation for c:

P

σY
= log(c/a) + b2 − c2

2b2
, (12)

the solution of which is shown in Fig. 4 for a = 1, b = 2. The right-hand side of this
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FIG. 4. The boundary of the plastic region, c, as a function of the pressure P (a = 1, b = 2)

equation increases for c between a and b. Thus, as P increases above PY the free boundary
moves from c = a to eventually reach c = b when

P = Pcrit = σY log(b/a). (13)

For values of P above Pcrit the entire cylinder flows plastically and will burst.
To motivate the asymptotics to follow, let us examine the above elastic/plastic solution

in the ‘ thin sheet’ limit b − a 
 1. Let b = a + εd and r = a + ερ with ε 
 1. Then,
from (9), (10) we see that

σrr ∼ −P(d − ρ)/d, (14)

σθθ ∼ a P/εd, (15)

while from (11) we see that PY is given by

PY = σY εd/a.

The pressure required to generate a plastic zone is thus O(εσY ), and the stress in the shell
is primarily a hoop stress.

Let us now examine the plastic/elastic solution. From (13) we see that to leading order

Pcrit ∼ σY εd/a.

Thus Pcrit = PY to leading order in ε and we must proceed to second order to examine the
transition from purely elastic to purely plastic behaviour. Therefore we set P = εσY d/a +
ε2 P̄ . We also let c = a + εc̄. Then, to leading order throughout the sheet the solution
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(14), (15) holds. The quantity of interest is c̄, which identifies the point of plastic/elastic
transition. Expanding (11) and (13) to two terms gives

PY ∼ σY εd

a
− 3σY ε2d2

2a2
,

Pcrit ∼ σY εd

a
− σY ε2d2

2a2
.

From (12) we find that c̄ is given in terms of P̄ by

P̄

σY
∼ − (c̄ − d)2

a2
− d2

2a2
.

3. Arbitrary cylindrical geometry

With the intention of generalizing the work of Section 2, let us now examine a portion of
a thin cylindrical sheet of arbitrary thickness and shape. We first note that in the previous
sections to leading order the pressure required to initiate a plastic region in the material,
PY , was the same as that corresponding to a fully plastic material, Pcrit. Suppose that
the pressure on the sheet is increased until it becomes plastic and flows. As it flows it
will become more curved, and we have seen that the critical pressure Pcrit increases with
curvature. The sheet will therefore stop flowing when the shape is such that a thin elastic
sheath forms on the outside of the sheet. If the pressure is increased further the sheet will
again flow, but it will always stop flowing when the pressure is exactly the critical pressure
for that shape of sheet. Thus we might expect the sheet to move quasi-statically through
critically plastic solutions as the pressure is increased, that is, through solutions in which
the whole sheet is plastic and the pressure is exactly equal to the critical pressure Pcrit.

We are therefore led to ask which shapes are critically plastic for a given pressure.
We begin by making the equations non-dimensional. Henceforth we use a subscript ∗

to represent dimensional variables, whilst unsubscripted variables denote non-dimensional
variables. We scale the lengths h∗, R∗, l∗ and x∗ with the mould semi-width a∗, stresses
with the material yield stress σY and pressure with εσY , where ε = d̄∗/a∗ 
 1 and d̄∗ is
a typical thickness of the sheet. Thus the dimensionless thickness of the sheet is given by
εd, where d is an order-one function of position and time.

A curvilinear coordinate system (s, n) is defined by

x = X(s) + nn,

where X(s) is the top (that is, high-pressure) edge of the sheet, s is arc length, and n is
the unit normal, which we take to point from the high-pressure region to the low-pressure
region. Then

xs = Xs + nns = (1 + κn)t,

xn = n,

where t is the unit tangent and κ is the curvature of the centreline, positive if the centre of
curvature lies in the high-pressure region. Our coordinate system is therefore orthogonal,
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with scaling factors given by

h1 = 1 + κn, h2 = 1

where the indices 1 and 2 have been used for the tangent and normal directions respectively.
In these curvilinear coordinates the equations of equilibrium, which represent force

balances in the t and n directions, are (see, for example, Chung (1988) or Howell (1994))

∂

∂s
(σ11) + ∂

∂n
(h1σ12) + ∂h1

∂n
σ12 = 0, (16)

∂

∂s
(σ12) + ∂

∂n
(h1σ22) − ∂h1

∂n
σ11 = 0. (17)

We now exploit the fact that the sheet is thin, by rescaling using n = ερ where ε 
 1
and asymptotically expanding as ε → 0. We find that (16), (17) become

∂

∂s
(σ11) + 1

ε

∂

∂ρ
((1 + κερ)σ12) + κσ12 = 0, (18)

∂

∂s
(σ12) + 1

ε

∂

∂ρ
((1 + κερ)σ22) − κσ11 = 0, (19)

with boundary conditions

σ22 = 0, σ12 = 0 on ρ = d, (20)

σ22 = −εP, σ12 = 0 on ρ = 0. (21)

Expanding in powers of ε we set

σ11 = σ
(0)
11 + εσ

(1)
11 +...,

and use similar expressions for σ12 and σ22. Substituting into (18), (19) gives at leading
order

∂σ
(0)
12

∂ρ
= 0,

∂σ
(0)
22

∂ρ
= 0.

The boundary conditions then imply that

σ
(0)
12 = 0, σ

(0)
22 = 0.

At next order in (19) we find that

∂σ
(1)
22

∂ρ
= κσ

(0)
11 .

The Tresca condition for the film to be in the plastic state is

|σ11 − σ22| = 1

and thus, at leading order,
σ

(0)
11 = ±1.



VACUUM MOULDING OF A SUPERPLASTIC IN TWO DIMENSIONS 227

As in the circular case discussed above we find that the predominant stress in the sheet is a
hoop stress. Since the sheet is in tension we have

σ
(0)
11 = 1,

and thus (using (20))
σ

(1)
22 = κ(ρ − d).

The boundary condition (21) now gives

P = dκ. (22)

Thus, as one might have expected, the sheet behaves exactly as though it were a membrane
with tension σY .

Equation (22) is the equation of equilibrium for a curved sheet of arbitrary thickness
under a given pressure differential. To formulate a quasi-static evolution model we need
equations to describe how the sheet thins and stretches as the pressure is increased.

Let the position of the sheet be given parametrically by

x = (x(s, t), y(s, t))

where s and t are arbitrary parameters. Conservation of area implies that as this curve
lengthens the sheet will thin according to the equation

d(s, t)
(

x2
s + y2

s

)1/2 = d0(s),

where d0 is the initial thickness of the sheet (not necessarily uniform). Finally, we need an
equation to say how the curve stretches. We assume that the material flows normal to the
curve. This gives the final equation

(xs, ys) · (xt , yt ) = 0.

Thus, our quasi-static evolution model is

κd = P, (23)

d
(

x2
s + y2

s

)1/2 = d0, (24)

xs xt + ys yt = 0. (25)

Using the expression

κ = xs yss − ys xss

(x2
s + y2

s )3/2
,

we finally derive, as our model for the quasi-static evolution of a sheet,

d0(xs yss − ys xss)

(x2
s + y2

s )2
= P, (26)

xs xt + ys yt = 0; (27)
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we shall normally specify initial conditions (see further comments below) and end
conditions, which for practical purposes will amount to the fact that the ends of the sheet
are fixed. In (26) P is a given function of time, but in fact we may take P = t without loss
of generality. In some circumstances it is better to think of P as an increasing parameter
and to write equation (27) as

xs xP + ys yP = 0.

As far as the s-parametrization is concerned, if d0(s) = d(s, 0) then clearly s is arc length.
Often, however, it is more convenient to choose the initial parametrization so that d0(s) = 1
and (x2

s + y2
s ) = d(s, 0)−2. In this manner (which has been used in much of the work

described below) d0 may be conveniently removed from the problem.

4. Simplified problems

Before we proceed to consider the full problem (26), (27), we attempt to gain some insight
into the behaviour of the model by considering two simplified problems. In the first we
ignore the thinning of the sheet completely, so that d in (23) is assumed always to be equal
to d0. In the second we apply the condition of conservation of area globally rather than
locally, and assume that d is uniform in space.

We consider the problem of an initially flat sheet being sucked into a rectangular mould,
as shown in Fig. 5.

4.1 Constant d

If d is taken to be constant, then the shapes of the sheet are simply arcs of circles. Due
to the non-dimensionalization we may set d = 1 without loss of generality. Then, if the
instantaneous radius of curvature is R, and the depth of deflection is h, we have (see Fig.
5)

h = R −
√

R2 − 1, (28)

R = 1/P, (29)

and therefore

h = 1

P
−

√
1

P2
− 1,

which is shown graphically (in dimensional form) in Fig. 6. For small P , the initial
deflection is given approximately by

h ∼ P

2
+ P3

8
,

which in dimensional variables is

h∗ ∼ a2∗
2

P∗
d̄∗σY

+ a4∗
8

(
P∗

d̄∗σY

)3

; (30)

the deflection of the sheet is thus quadratic in the semi-width a∗ to leading order.
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A second quantity of interest is the relationship between the displacement h∗ and the
semi-width a∗ for various pressures. To this end we note that (28), (29) imply that

P∗h∗
d̄∗σY

= 1 −
√

1 − 1

R2
, (31)

P∗a∗
d̄∗σY

= 1

R
. (32)

The non-dimensional quantities of interest are therefore

P∗h∗
d̄∗σY

and
P∗a∗
d̄∗σY

.

The relationship (31), (32) is plotted in Fig. 7; it is of interest to note the scaling law implied
by (31) and (32), which indicates that the graphs of h∗ versus a∗ for different pressures can
all be collapsed onto a single graph.

4.2 Uniform d

We now suppose that the thickness of the sheet is still uniform, but that the sheet thins by
mass conservation. Then, for a given deflection, the thickness is determined by the equation

ld = 2,

where l is the length of the sheet, and again without loss of generality we have taken the ini-
tial thickness to be unity. Since d is uniform the shapes of the sheet are still arcs of circles.
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Using the same notation as above we have

l = 2R sin−1(1/R),

d = 1

R sin−1(1/R)
,

h = R −
√

R2 − 1, (33)

P = 1

R2 sin−1(1/R)
. (34)

If we again examine the initial deflection for small P (large R) we find that

h ∼ 1

2R
+ 1

8R3
, P ∼ 1

R
− 1

6R3
.

Hence

h ∼ P

2
+ 5P3

24
,

or, in dimensional variables,

h∗ ∼ a2∗
2

P∗
d̄∗σY

+ 5a4∗
24

(
P∗

d̄∗σY

)3

. (35)

Comparing (35) to (30) we see that the thinning does not alter the first term in the
expansion, but does give a greater deflection in the second term, as might be expected.

Displacement is plotted against pressure in Fig. 8. We see that the graph turns around
on itself, so that for values of P greater that a critical value Pc there is no solution. This
criticality arises because the increase in pressure that the sheet can withstand due to its
increase in curvature is less than the decrease in pressure due to the fact that it thins. As P
increases through Pc one would expect there to be a large change in the shape of the sheet,
which would flow until it touched the base of the mould (this is similar to the instability of
the circularly cylindrical shell above the critical pressure Pcrit).

The value of Pc may be calculated from (33), (34). We find that the critical point
corresponds to

Rc ≈ 1.08813, Pc ≈ 0.724611, hc ≈ 0.659150,

which gives, in dimensional variables,

R∗c = 1.08813 a∗, P∗c = 0.724611 σY d̄∗
a∗

, h∗c = 0.659150 a∗.

It is again of interest to examine the displacement as a function of the semi-width. We
find that

h∗ P∗
d̄∗σY

= R − √
R2 − 1

R2 sin−1(1/R)
, (36)

a∗ P∗
d̄∗σY

= 1

R2 sin−1(1/R)
. (37)

Thus the same scaling law as when d is constant holds, so that the curves for different
pressures can be collapsed to a single curve by plotting the correct non-dimensional
parameters. The curves (36), (37) are shown in Fig. 9.
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5. Alternative formulation and similarity solutions

It is always useful to obtain some explicit non-trivial solutions of a problem for use as a test
for possible numerical schemes. To this end we consider in this section similarity solutions
of the problem (23) to (25). We first recast the equations in an alternative form.

Choosing the parametrization for simplicity so that d0(s) = 1 (see remarks at the end
of Section 3), we begin by differentiating (24) with respect to s to give

ds = − xs xss + ys yss

(x2
s + y2

s )3/2
. (38)

Now we solve the simultaneous equations (38) and (26) for xss and yss to give

xss = − Pys

d2
− ds xs

d
, yss = Pxs

d2
− ds ys

d
.

These may be written as

(dxs)s = − Pys

d
, (39)

(dys)s = Pxs

d
. (40)

Now we differentiate (25) with respect to s, simplify using (23) and solve the resulting
equation simultaneously with (25) for xt and yt to give

xt = ys(xst xs + yst ys)

P(x2
s + y2

s )2
,

yt = − xs(xst xs + yst ys)

P(x2
s + y2

s )2
.

Differentiating with respect to s again, these may be written as

Pxst = −(ysddt )s, (41)

Pyst = (xsddt )s . (42)

Thus our system of equations has become (39), (40); (41), (42); and

d(x2
s + y2

s )1/2 = 1, (43)

not all of which are independent. Now, from (43) we may set

dxs = cos φ, dys = sin φ,

to give
d2φs = P, Pφt = ddst .

As before, we may replace P by t without loss of generality to give

d2φs = t, (44)

tφt = ddst .
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We now examine the similarity solutions of this system. Eliminating d we have

φsst − 3φssφst

2φs
+ 2φ2

s φt + φss

2t
= 0.

This equation has similarity solutions of the form

φ = φ(η), η = stλ

for any λ, giving

ηλφ′′′ + (λ + 1)φ′′

2
− 3ηλ(φ′′)2

2φ′ + 2ηλ(φ′)3 = 0,

where a prime means differentiation with respect to η. Now letting φ′ = f/η, and ζ =
log η gives

λ fζ ζ + (λ + 1) fζ
2

− f

2
− 3λ f 2

ζ

2 f
+ 2λ f 3 = 0.

Finally, letting g = fζ / f 3/2 and ξ = f 1/2 we obtain

ξ3λggξ + (λ + 1)ξg − 1 + 4λξ4 = 0. (45)

This equation does not appear to possess closed-form solutions for general values of λ. The
(somewhat degenerate) case with λ = 0 leads to solutions of the form

x = 1√
At

sin(As + B) + C,

y = − 1√
At

cos(As + B) + C,

where A, B and C are arbitrary constants, but these are unstable and so are of little use
for numerical validation. If, however, we now choose λ = −1 then (45) is separable and
integrates to give

g2 = 1

ξ2
− 4ξ2 + a.

Substituting for g and ξ in terms of f and integrating gives

eζ = b f

2 + a f + 2(1 + a f − 4 f 2)1/2
,

which gives

φ′ = 4b

(aη − b)2 + 16η2
,

so that

φ = − tan−1
(

4η

aη − b

)
,
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where the constant of integration has been set to zero, since constants in φ correspond
simply to a rotation of coordinates. Hence

dxs = aη − b

((aη − b)2 + 16η2)1/2
, dys = − 4η

((aη − b)2 + 16η2)1/2
.

Now, from equation (44) we have

d = t ((aη − b)2 + 16η2)1/2

2b1/2
,

giving

x =
√

b

16 + a2

[
−8 tan−1

(
4bt

abt − s(16 + a2)

)
+ a log

(
(16 + a2)s2 − 2abts + b2t2

t2

)]
,

(46)

y = −
√

b

2
log t − 2

√
b

16 + a2

[
a tan−1

(
4bt

abt − s(16 + a2)

)

+2 log

(
(16 + a2)s2 − 2abts + b2t2

t2

)]
. (47)

6. Numerical solution of the two-dimensional quasi-static problem

We now consider the numerical solution for general cases of the two-dimensional quasi-
static non-uniform thickness problem. Given a prescribed pressure P(t), the equations

xs yss − ys xss

(x2
s + y2

s )2
= P(t), (48)

xs xt + ys yt = 0 (49)

must be solved subject to x = (x0(s), y0(s)) being prescribed at t = 0. We assume that,
if the parameter s ranges over the values [s0, s1] say, then the quantities (x(s0, t), y(s0, t))
and (x(s1, t), y(s1, t)) are known. (In cases of industrial relevance, of course, the edges of
the sheet will normally be pinned.) There are many possible numerical schemes for solving
(48) and (49); the scheme described below has proved to be robust and economical and,
with some modifications, could be extended to cover three-dimensional cases.

We seek to discretize (48) and (49) in a semi-implicit manner so that, whilst the method
might involve solving systems of linear equations, we are not faced with the complications
of dealing with large systems of nonlinear equations. Explicit discretizations are also
possible: some numerical experiments have shown, however, that such methods are likely
to require a prohibitively small time step for stability.

The particular form of discretization chosen for the equations amounts to using central
differences in the evolution equation and evaluating second derivatives in the curvature
equation (48) at the new time level. Dividing [s0, s1] into N equal intervals each of width
∆s = (s1 − s0)/N and denoting successive time steps of duration ∆t by a superscript n,
we write xn

k = x(s0 + k∆s, n∆t) (n � 0, 0 � k � N ) and discretize (48) and (49) using
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(xn
k+1 −xn

k−1)(yn+1
k+1 −2yn+1

k + yn+1
k−1 )−(yn

k+1 − yn
k−1)(xn+1

k+1 −2xn+1
k +xn+1

k−1 )

= P(tn+1)

8∆s
((xn

k+1 − xn
k−1)

2 + (yn
k+1 − yn

k−1)
2)2,

(xn
k+1 − xn

k−1)(xn+1
k − xn

k ) + (yn
k+1 − yn

k−1)(yn+1
k − yn

k ) = 0.

The scheme is applied for n = 1, 2,... and k = 1, 2,..., N − 1 with xn+1
0 , xn+1

N , yn+1
0 and

yn+1
N known, and yields the linear equations

A(wn)wn+1 = b(wn), (50)

where A is the (2N −2)× (2N −2) matrix with elements given by zero everywhere except
for

Ai,i = Xi (1 � i � N − 1),

Ai,i+N−1 = Yi (1 � i � N − 1),

Ai,i−N+1 = 2Yi−N+1 (N � i � 2N − 2),

Ai,i = −2Xi−N+1 (N � i � 2N − 2),

Ai,i−N+2 = −Yi−N+1 (N � i � 2N − 3),

Ai,i+1 = Xi−N+1 (N � i � 2N − 3),

Ai,i−N = −Yi−N+1 (N + 1 � i � 2N − 2),

Ai,i−1 = Xi−N+1 (N + 1 � i � 2N − 2),

where
Xk = xn

k+1 − xn
k−1, Yk = yn

k+1 − yn
k−1 (k = 1, 2,..., N − 1),

the vector b is defined by

bi = xn
i Xi + yn

i Yi (1 � i � N − 1),

bN = R1 − yn+1
0 X1 + xn+1

0 Y1,

bi = Ri−N+1 (N + 1 � i � 2N − 3),

b2N−2 = RN−1 − yn+1
N X N−1 + xn+1

N YN−1,

where

Rk = P(tn+1)

8∆s
(X2

k + Y 2
k )2,

and

wi =
{

xi (1 � i � N − 1),

yi−N+1 (N � i � 2N − 2).

Assuming that x = x0(s) and y = y0(s) are known and P(t), the mould
depressurization profile, is given, (50) may be solved using a standard method (in this case
we used the NAG routine F04ATF which employs LU factorization with partial pivoting
and iterative refinement) to progress from one time step to another. The only other item of
practical concern is that the method must somehow be started. At t = 0 we require that the
profile x = (x0(s), y0(s)) of the metal plate that is to be extruded must satisfy (48). This
is a consequence of the quasi-static nature of the model; if the vacuum forming process
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was started with a profile that did not satisfy (48) then t → 0 boundary-layer behaviour
(which would perforce be governed by a much more complicated mathematical model)
would allow the initial profile to evolve to a state capable of satisfying (48).

When P(0) = 0 simple initial plate configurations such as x0(s) = s, y0(s) = 0 are
available and may be used: these correspond to metal sheets of constant thickness and so
are of practical importance. When P(0) �= 0, however, (48) must be solved numerically
to determine y0(s) for a given x0(s), say. In the calculations reported below the NAG two-
point boundary-value routine D02HAF was used to solve the initial problem. This employs
a Runge–Kutta–Merson method and a Newton iteration shooting and matching technique.
It is worth noting that the initial problem may also be posed in a number of other ways; if
the initial thickness of the metal plate d0(s) is regarded as given, then the problem to be
solved becomes

x0s y0ss − y0s x0ss

(x2
0s + y2

0s)
2

= P(t), (51)

x2
0s + y2

0s = d2
0 (s).

This could be solved in a similar fashion.

6.1 Superplastic forming into a mould

Assume that superplastic forming takes place into a mould bounded by y = f (x).
Then clearly when material reaches the mould wall further movement is prevented. Many
alternatives are possible to model this behaviour. In the absence of any firm contradictory
evidence we make the simplest and most obvious hypothesis, asserting that material sticks
to the mould on contact and cannot move thereafter. (It is not obvious that further lateral
stretching does not take place; if this were to be observed experimentally then some
fairly simple modifications could be built into the model.) The numerical procedure is
straightforward: after performing a time step according to (50) each new yn+1

k is examined.
If it is found that yn+1

k < f (xn+1
k ) then linear interpolation is used to ensure that mass is

conserved and the calculated values of xn+1
k and yn+1

k are replaced by

xn+1
k = xn

k f (xn+1
k ) − xn+1

k f (xn
k ) + yn

k xn+1
k − xn

k yn+1
k

f (xn+1
k ) − f (xn

k ) + yn
k − yn+1

k

,

yn+1
k = yn

k f (xn+1
k ) − yn+1

k f (xn
k )

f (xn+1
k ) − f (xn

k ) + yn
k − yn+1

k

.

6.2 Numerical stability of the method

The proposed semi-implicit method was developed in an ad hoc fashion: explicit methods
were tried and found to be unstable, whilst the nonlinear equations that were produced
by fully implicit methods proved costly to solve. As usual in such cases, it is desirable
to consider the numerical stability and convergence of the scheme. The nonlinearity of
(48) and (49) renders exact analysis prohibitively difficult, however, and the best that may
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be accomplished is to investigate the stability properties of a related paradigm system.
Examining the system

xt + λyt = 0, (52)

yss − µxss = P(t)(xs + ys), (53)

where λ and µ are constant and P(t) is given, subject to the discretization

xn+1
k − xn

k + λ(yn+1
k − yn

k ) = 0, (54)

yn+1
k+1 −2yn+1

k + yn+1
k−1 −µ(xn+1

k+1 −2xn+1
k +xn+1

k−1 ) = 1
2 P(tn)∆s(xn

k+1 −xn
k−1 + yn

k+1 − yn
k−1)

(55)
we find that, written in block matrix form with zn = (xn | yn)T , the scheme (54) and (55)
amounts to

Bzn+1 = Qzn + Gn(t).

Here Gn(t) is a 2N − 2-vector whose composition is immaterial as far as the numerical
stability of the scheme is concerned,

B =
(

I λI
µA −A

)
, Q =

(
I λI
K K

)

and

A =




2 −1 0 ... ... 0
−1 2 −1 ... ... 0

0 −1 2 ... ... 0
...

...
...

. . . 0
...

...
... −1 2 −1

0 0 0 0 −1 2




, K =




0 k 0 ... ... 0
−k 0 k ... ... 0

0 −k 0 ... ... 0
...

...
...

. . . 0
...

...
... −k 0 k

0 0 0 0 −k 0




.

The stability of the system is thus determined by the spectral radius ρ(C) of the iteration
matrix

C = B−1 Q = 1

1 + λµ

(
I + λA−1 K λI + λA−1 K
µI − A−1 K λµI − A−1 K

)
.

Denoting the eigenvalues of C by p, it is possible to show by elementary row and column
operations that the condition det(C − pI ) = 0 is equivalent to

det

(
(1 − p)I 0

0 A−1 K − q I

)
,

where p = −q/(1 + λµ). Since clearly C has N − 1 eigenvalues given by p = 1,
its spectral radius is ultimately determined by ρ(A−1 K ). The spectral radii of A−1 and
K are easily determined, for the eigenvalues of A−1 and K are given respectively by
(2 − 2 cos( jπ/N ))−1 and 2ik cos( jπ/N ) for ( j = 1, 2,..., N − 1). There seems to be no
simple expression, however, for the eigenvalues of A−1 K . Although the spectral radius of
a product is bounded by the product of the spectral radii when both matrices are Hermitian,
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this need not be true otherwise. Since K is not Hermitian, we are forced to rely on the
bound

ρ(M) � ‖M‖
which is true for all real matrices M . Luckily, in the present case it transpires that the
infinity norm of A−1 K is easy to determine; straightforward (though tedious) methods
show that

‖A−1 K‖∞ = k(N − 2).

The spectral radius of C is thus 1 (and the method is therefore neutrally stable) provided

| p |� (N − 2)∆s P(tn)

2 | 1 + λµ | � 1.

Since ∆s = (s1 − s0)/N , this amounts to the condition that

(s1 − s0)(1 − 2/N )P(tn)

2 | 1 + λµ | � 1. (56)

Although the requirement (56) ensures the (neutral) stability of the method only for
the paradigm linear problem (52) and (53), its conclusions are well borne out in practice
for the full problem. Experience using the scheme (50) shows that stability never depends
on the size or number of space or time steps, but rather on the size of the pressure P(t).
The validation results given below for a test problem are typical and confirm that it is
accuracy, rather than stability, that depends upon the mesh details. We also note that, as
expected, for a given x0(s), the initial boundary-value problem (51) may not possess a
solution for all P(0); for example, when x0(s) = s it is straightforward to show that the
relevant boundary-value problem has a solution only if

P(0) � 1
2π.

6.3 Method validation

As indicated above, the stability and accuracy of the method may be analysed only for
a linearized version of the problem. Validation of the scheme and numerical code using a
test case is therefore important. Using the similarity solution (46), (47) numerical solutions
were computed for various values of the parameters a and b and for various spatial and
temporal discretizations. In all cases the numerical scheme performed efficiently and
accurately. Table 1 shows a typical set of results, computed with b = 1 and a = 0.
Computations were performed starting from t = 1 up to a time t = 11. For each
discretization the quantity ‖xc−xe‖∞ is shown, where xc is the computed solution and xe

the exact solution given by (46) and (47). As predicted by the stability analysis, no spatial
or temporal discretization exhibits instability. For a fixed spatial mesh, the error decreases
to a minimum as the time step decreases, before increasing again.

A typical set of results for the test problem is illustrated in Fig. 10, where the
parameters N = 50, ∆t = 0.005 were used. The computed solution (solid line) is almost
indistinguishable from the exact solution (dotted lines). The only slight noticeable errors
are in the thickness near to the ends of the sheet; this is due to the explicit nature of the
scheme.
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TABLE 1
Error norm for test case using (46) and (47) with a = 0, b = 1

N ∆t = 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001
5 5.2471E-3 1.8129E-3 1.1081E-3 2.1948E-3 2.5641E-3 2.7501E-3 2.8621E-3 2.8996E-3
10 6.7818E-3 3.0212E-3 1.2884E-3 2.9490E-3 4.4155E-4 6.1961E-4 7.2737E-4 7.6345E-4
20 7.8573E-3 3.4660E-3 1.6006E-3 5.6771E-4 2.3708E-4 7.4294E-5 1.3701E-4 1.7185E-4
30 9.2444E-3 3.6997E-3 1.6906E-3 6.2317E-4 2.8749E-4 1.2329E-4 2.5912E-5 5.8335E-5
40 1.4835E-2 3.9385E-3 1.7496E-3 6.4651E-4 3.0610E-4 1.4067E-4 4.2903E-5 1.8232E-5
50 6.9072E-2 4.2424E-3 1.8018E-3 6.6062E-4 3.1552E-4 1.4891E-4 5.0725E-5 1.8397E-5

Finally, we note that because of the method chosen, the equations have a banded
structure and are sparse. One consequence of this is that the method would be easily
applicable to three dimensions. Using parameters u and v so that the equation of the metal
sheet is given by x = (x(u, v), y(u, v), z(u, v)), the equations of motion under similar
modelling assumptions to those used for the two-dimensional case become

xu xt + yu yt + zuzt = 0,

xvxt + yv yt + zvzt = 0,

K (u, v)d(u, v)σY = P(t),

d(u, v)(C11C22 − C2
12)

1
2 = d0

where the mean curvature k is given by

K = 1

2(C11C22 − C2
12)

3/2
[C22(C6xuu + C5 yuu + C4zuu) − 2C12(C6xuv + C5 yuv + C4zuv)

+C11(C6xvv + C5 yvv + C4zvv)],

and

C11 = x2
u + y2

u + z2
u, C12 = xu xv + yu yv + zuzv, C22 = x2

v + y2
v + z2

v,

C4 = xu yv − yu xv, C5 = zu xv − xuzv, C6 = yuzv − zu yv.

Although if each coordinate direction is discretized using N points (as for the two-
dimensional case) we now need to solve a 3(N −1)2×3(N −1)2 system of linear equations;
the sparsity of the equations renders them amenable to the use of specific routines to
minimize storage and solution time.

Although details of a fully three-dimensional numerical solution must await another
study, it is worth pointing out that such a model would allow detailed comparisons with
experiment to be made. An extensive search of the literature has failed to find any two-
dimensional ‘ channel’ type experiments, thus limiting the current study to qualitative
comparisons.



VACUUM MOULDING OF A SUPERPLASTIC IN TWO DIMENSIONS 241

FIG. 10. Numerical (solid lines) vs. exact (dashed lines) solution comparison for test case

7. Numerical results

Numerical solutions to (48) and (49) were computed for a variety of cases. In each of
the computations reported below 50 mesh points and a time step ∆t = 0.001 were used.
Computations took place over the region 1 � s � 2 and for t > 0.

Figure 11 shows a typical case of flow with no restraining mould wall; for this case the
pressure was given for t > 0 by

P(t) = 1 − e−t ,
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FIG. 11. Superplastic vacuum moulding for t > 0 with P(t) = 1 − e−t and an initially constant thickness sheet

the sheet was fixed at the corners (1, 0) and (2, 0), and the initial sheet thickness was given
by x0(s) = s, y0(s) = 0 so that d0(s) = 1 everywhere.

The behaviour of the sheet in this case is as one might expect; after an initial rather
rapid sheet expansion phase, the ever slower increase in pressure expands the sheet to a final
steady-state configuration. Results are shown at intervals of 0.5 time units, and we note that
the sheet reaches just over one-half of its maximum downward deflection in a time of 1 and
occupies virtually its steady-state position by the time t = 4. The sheet thickness is equally
predictable, with a maximum thinning of just under 8 per cent at the centre of the sheet.
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FIG. 12. Superplastic vacuum moulding for t > 0 with P(t) = 2(1 − e−t ) and an initially constant thickness
sheet into a wedge-shaped mould

Figure 12 shows superplastic moulding into a mould (shown by a broken curve) defined
by

y =



−(x − 1) (x < 3
2 ),

−(2 − x) (x � 3
2 ),

with a driving pressure
P(t) = 2(1 − e−t ).
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FIG. 13. Superplastic vacuum moulding for t > 0 with P(t) = 1.65(1 − e−t ) and an initially constant thickness
sheet into a shaped mould

Once again, the sheet was fixed at the corners (1, 0) and (2, 0) and the initial sheet thickness
was given by x0(s) = s, y0(s) = 0 so that d0(s) = 1 everywhere. Results are shown at
intervals of 0.1 time units. The sheet bends at its corners until it makes contact with the
mould wall. Parts of the sheet that are in contact with the wall stick to the mould, whilst
the remaining free parts of the sheet are further stretched. Although penetration into the
bottom corner of the mould is not complete, the material fails only by a small amount to
fill the mould completely. The thinning of the sheet is apparent from the lower section of
Fig. 12, as is the characteristic ‘W’ shape of the thickness of the final product.
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One of the anticipated uses of superplasticly moulded zinalco is to form soda cans and
other articles used for containing food. In Fig. 13 a driving pressure given by

P(t) = 1.65(1 − e−t )

is used to form a sheet of initially constant thickness into a mould with a container-type
shape given by

f (x) = −0.3(1 − (2x − 3)4)1/4.

Output is shown every 0.2 time units, and though rapid expansion takes place up to and
until the centre of the metal sheet reaches the bottom of the mould, expansion is slowed
thereafter. Ultimately, the sheet fails to penetrate into the furthest corners of the mould. We
also note that the sheet thickness once again assumes a ‘W’ profile as thinning is partially
prevented near to the centre of the sheet by its contact with the mould wall. In contrast
to the previous case, however, the ‘W’ shape of the thickness curve is now much more
pronounced. This agrees well with qualitative experimental evidence which suggests that
a more pronounced ‘W’ should be observed whenever the material hits the bottom of the
mould before reaching its sides.

8. Conclusions

Based on the hypothesis that a superplastic sheet is in a critically plastic state whenever
it stops flowing we have systematically derived a model for the final shape of a sheet
subjected to a given pressure-drop history. This model may be thought of as representing
the limit m → 0 of the more usual power-law fluid approach to superplastic materials and
is derived by performing an asymptotic expansion in the limit as the thickness of the sheet
tends to zero.

Some aspects of the model are worth further comment. The model that we obtain is
quasi-static, moving through a series of steady states. Such steady states exist because we
have assumed that the material possesses a yield stress—in the case of a power-law fluid
there would be no steady state until the sheet covered the mould. Much previous published
work on superplastic forming has focused on the problem of how to adjust the pressure
history so that the strain rate is such that exponent m (which is typically a function of
strain rate, so that technically it is incorrect to refer to such materials as power-law fluids)
is maximized (Bonet et al. (1990), Carrino & Guiliano (1997)). The aim behind this is
to minimize the possibility of necking. Since we are concerned here with a quasi-static
model, all monotonic pressure histories arriving at the same final pressure drop will have
the same final state. However, the numerical stability of the problem indicates that under
the assumption of a critically plastic state necking will not occur.

For some superplastic materials m may be as large as 0.8, in which case the limit
m → 0 may not be appropriate. The main point at issue for such values of m is the validity
of the quasi-static assumption. Even for such materials, however, if the forming process
is carried out using rapid pressure drops the theory developed above may still give useful
results.

In Section 4 we examined the predictions of this model for the dependence of the final
displacement of the sheet on both applied pressure and the dimensions of the opening of
the mould, under the assumption that the thickness of the sheet remained uniform. The
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analysis highlighted certain non-dimensional groups as being the important parameters; it
will be interesting to see if the experimental data can be collapsed onto a single curve by
rescaling as this analysis suggests.

Finally, work is presently being carried out to extend the model and numerical scheme
to fully three-dimensional cases. This will allow a more direct quantitative comparison
with experimental results.
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