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Summary. Many mathematical models of evolutionary industrial processes may be written as Nx N
systems of conservation Jaws in terms of N independent variables comnprising time and N — 1 space
vartables. If such systems possess real and distinct eigenvalues, they are said to be strictly hyperbolic.
For ‘mixed systems’, however, the eigenvalues may be equal at points in phase space or even faif to be
real, so that the problem has both hyperbolic and elliptic characteristics. In this case the system is
ill-posed and requires the specification of boundary conditions that can violate causality. Mathematical
models of physical processes that lead to mixed equations are discussed and reviewed, and some of the
properties of mixed systems are compared to those of hyperbolic systems. The significance of prototype
systems that have been proposed specifically to analyse such properties is considered, and atterition is
then turned to the archetypal mixed system; the two-phase flow equations. Possible resolutions of the
two-phase flow dilemma are compared, and a manner in which the modelling may be approached via
a more general rational agymptotic scheme is indicated.
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1 Introduction

Systems of conservation laws of mixed type occur in a wide variety of mathematical
modelling problems. “Mixzed” systems are distinguished by the fact that they
possess both real and complex eigenvalues, unlike the more familiar hyperbolic,
parabolic or elliptic systems of conservation laws where the eigenvalues are either
pure real or pure imaginary This survey discusses the types of models that can give
rise to mixed systems, giving pariicular attention to mixed systems that occur in
industrial contexts. A variety of models will be discussed more fully in the sub-
sequent sections, but two-phase flow problems will receive the largest amount of
attenition; such flows are so common in a wide variety of industrial processes and
there has been so much attendant confusion and controversy that there seems to be
ne consensus on how to proceed in general

To practitioners that have not encountered them before, the appearance of
mixed systems is often quite nnexpected. The strictures of profit and production
dictate that in most cases industry cannot wait for a complete academic resolution
of the multitude of complicated practical problems that are posed by mixed
systems For this reason this survey concentrates not only on the mathematical
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technicalities of mixed problems, but also addresses the matter of how practical
and sometimes “dirty” techniques may be used to determine important results. We
shall see below that it is probably possible to construct cogent mathematical
arguments for completely discarding many mixed systems that arise from models of
industrial processes. Once again, however, the practicalities of industrial develop-
ment render the understanding of such systems wholly worthwhile, as in many
cases the existing model, though it leads to mixed equations, may be the only
available model and must therefore be used in spite of its shortcomings. Clearly in
these circumstances any indication of how reliable the results that are produced
might be is of the greatest value.

In Sect. 2 some notation is standardized and some mathematical preliminaries
are dealt with. Some of the more standard properties of scalar equations and
hyperbolic systems are then highlighted so that the differences and similarities in
behaviour when the conservation laws are of mixed type can be stressed.\In Sect.
3 a selection of mathematical models are introduced; all were originally developed
to attempt to explain physical processes, many are relevant to modern industry and
all give rise, in certain circumstances, to mixed systems of conservation laws.
Section 4 summarizes the similarities and differences between these models and
discusses the effect that the mixed nature of the equations has exerted on model
development.

Meuch effort has been expended in recent years on the determination of the
properties of specially constructed prototype mixed systems. Attention has been
given not only to systems with both real and imaginary eigenvalues, but also to
“nonstrictly hyperbolic” systems where, though the eigenvalues are real, they may
coalesce, leading to solutions with novel preperties. Progress is reviewed in Sect. 5.
In Sect. 6 we turn in more detail to the specific problem of two-phase flow,
considering varicus different approaches that have been used to deal with the
mixed nature of the problem. Numerical methods are discussed, and, proceeding
upon technical grounds alome, it soon becomes evident that mumerically the
outlook is scmewhat bleak It is possible to take a more pragmatic view however,
and some examples are given of circumstances where useful numerical results may
be produced. Finally, in Sect 7 some conclusions are drawn regarding mixed

problems and some issues are identified that need to be addressed if the theory is to
be advanced.

2 Mathematical preliminaries

To standardize notation, it is assumed that we wish to investigate the properties of
an N x N first-order system of conservation laws of the form

Aw, -+ Bw, =b (D

Here w is a vector composed of the N unknowns (dependent variables) in the
problem, A and B are N x N matrices (which in general will depend on w as well as
x; and x,) and b is the “source term” vector, which may depend on x, x; and w,
but contains no derivatives of the independent variables Typically (though not
always), x, will be taken to be the time ¢ and x, will represent a distance x. If this is
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the case then it will be assumed throughout (unless otherwise sta{ed) that ¢t and

+ x have been identified respectively as “timelike” and “spacelike” variables and

suitable initial and boundary conditions have been specified. (It will become
apparent that the specification of “suitable” boundary conditions for mixed sys-
tems may be a far from trivial problem.) As usual, the cigenvalues 1 = dx,/dx; of
the system (1) are defined to be solutions of the characteristic equation

det(B - 14) =0,
whilst the (right) eigenvectors are vectors x that satisfy
(B—Ad)x=0.

The eigenvalues and eigenvectors lead directly to the Pfaffian differential equations
for the system, confirming that, along characteristics, the system reduces to ordi-
nary differential equations. In some cases the Pfafflan equations may be solved,
thus determining the Riemann invariants of the system

In general, the eigenvalues are the solutions of an N-th degree polynomial
equation whose coefficients are functions of w, x; and x,. We refer to the syster (1)
as hyperbolic if all the eigenvalues are real and mixed if some are real and some are
complex with non-zero imaginary parts. From a rigorous point of view, the
definition of hyperbolicity given above is a little loose, for the normal requirement
for strict hyperbolicity is that the eigenvalues are real and distinct For the
conservation laws that will form the main body of our study, however, the
eigenvalues depend on the elements of w as well as x and ¢ and there may be regions
in phase space where strict hyperbolicity does not hold. This can happen in various
ways, but we group all such systems together by referring to them as nonstrictly
hyperbolic. In cases where the eigenvalues are real but identically equal, we refer to
(1) as parabolic Even if a system is strictly hyperbolic, the properties of the
eigenvalues may greatly influence the sort of discontinuities that might be expected
to appear in solutions. Given an eigenvalue 4, and a corresponding right eigenvec-
tor x,, we define 4, to be genuinely nonlinear f Vi, -x, # 0 If every ecigenvalue is
genuinely nonlinear, then we refer to (1) as a genuinely nonlinear system. Frequently
in the study of mixed systems we encounter eigenvalues that are genuinely nonlin-
ear except at a number of isolated points in phase space where VA, -x, = 0. Such
poinis are referred to as fognals.

Although the definitions given above refer to N x N systems, our major concern
will frequently be the study of mixed systems of two equations in two unknowns
with two independent variables. Such a restriction enjoys the great advantage that
it is possible to study solutions by examining two-dimensional phase space.

2.1 A review of some relevant theory for hyperbolic equations

The single conservation law

To fix ideas, consider the single conservation law

b = 05 u(x, 0) = uolx). 2
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Tt is well-known that solutions to such equations can develop discontinuities
(shock solutions) in finii¢ time. In the case of mixed systems we will naturally be
interested in shock-type solutions, so what can be said about solutions to (2)?
Firstly, we must decide what we mean by the term “sclution”, for the equation
contains derivatives and clearly these cannot be defined in the standard way for
discontinuous solutions. Suppose that we are interested in solutions of (2) which
are defined for a < x < band 0 < ¢t < v Henceforth we regard a “solution” to (2} as
a (possibly discontinuous) bounded measurable function u(x, f) with bounded
measurable initial data uy which satisfies

”tzo(“‘/" +ﬁpx)dA+J gl dx = 0 3)

for all test functions ¥ with continuous first derivatives and compact support on

a suitable region, for example, D = {(x, f}:a < x < b,0 < ¢ < 7}. The advantage of
this definition of a “weak” solution is obvious; all continuous (“classical”) solutions
are weak solutions (a fact easily confirmed by applying Green’s theorem to (2)), but
the condition (3) does not require u(x, £J to be continuous.

The definition (3) allows u(x, £) to possess only very special types of discontinu-
ity, for suppose I' is a curve across which u(x, t) is discontinuous and which
separates D into two regions Dy and D, with D = D,;uD,. Assuming that u(x, t}
has continuous derivatives in each of Dy and D, an application of Green’s theorem
in D, and D, separately shows that

[ var@ia-paa -o, @

the square brackets denoting the jumps in u and f{(1) as the boundary I' is crossed.
The arbitrary npature of  means that (4) can ouly be true in general if the shock
speed s=dx/dt satisfies the jump condition (sometimes termed a Rankine-
Hugoniot condition)

_Lf)]
=] &)

It has long been known that the definition of a weak solution and the satisfac-
tion of the jump condition is not enough for existence and uniqueness. A further
condition, usually referred to as an entropy condition is required, and for the single
conservation law this asserts that, if 4y and uy are the values of u respectively to the
left and right of a jump in the solution, then

Flug) <5 <f'lw). (©)

There are many compelling physical reasons why (6) should hold. The condition
requires that the shock speed lies between the characteristic speeds on either side of
the shock, and is closely related to the existence of a viscous profile (see below). It
also plays a crucial role (see, ¢.g., [45]) in the proof of existence and uniqueness of
solution for the scalar conservation law. More geunerally, the entropy condition
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may be thought of as being an admissibility condition that selects the most

- physically reasonable solution from a number of candidates

The definition of a weak solution, together with the notions of jump and
entropy conditions provide all the required elements to solve problems such as (2)
by piecing together shocks with continuous regions of the flow.

22 The Riemann problem for liyperbolic systems of conservation laws

The mathematical models that will be considersd below inevitably involve systems
of conservation laws. A particularly useful special case that is frequently studied for
simplicity occurs when the initial data wy for a system is composed only of two
constant states, say wy and wg, separated by a jump at x = 0. This is generally
known as a Riemiann problem.

Although much is known about the scalar conservation law considered above,
even for source-free N x N hyperbolic systems of the form

w,+EW). =0, w(x 0)=wo(x), 7

{where w = (w;, w,, .. ,wy)) much less theory is available. The most important
existence theorem is due to Glimm [12]. This asserts that, if the eigenvalues and
eigénvectors of (7) are denoted respectively by A, and z, then if the system is
hyperbolic (all the 4, real and distinct) and genuinely nonlinear (Vi -z, # 0 for all
k) i some open subset of %%, existence of the solution is guaranteed for all £ > 0
provided that the total variation of w, is sufficiently smail

The restriction on the size of the initial data arises from the fact that the proof of
Glimm’s theorem relies essentially on showing that approximate solutions formed
by joining together the solutions of Riemann problems possess a limit which is
a solution; this is so only if the initial states are sufficiently close to each other. For
particular systems with less restrictive initial data there are some existence results,
(see, for e.g, [307]) but the general problem remains unsolved, as does the question
of uniquenecss.

Naturally, for (7} the Rankine-Hugoniot and entropy conditions (35) and (6)
must be generalized. This may be accomplished in a natural way by requiring that

s(w, — wg) = £(we) - f(we) )

{thereby replacing (5) with N equations for wy, wy and s), and denoting solutions as
permissible in the entropy sense so long as for some k

Ap(Wr) <8 < Apey(Wr)  Ag—y(WL) <Ts < dp{wo). 9

The latter condition has come to be known as the Lax entropy condition for
a k-shock. Assuming that the eigenvalues are ordered in increasing order of
magnitude, it is equivalent to the statement that, for a k-shock,

A(wg) <5 < Jglwy) (10)

As far as the Riemann problem for strictly hyperbolic systems of order N is
concerned, a solution may generally be constructed in terms of a colection of
N centred waves, which may be either shocks or rarefactions. When N exceeds 2,
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contact discontinuities (arising from a failure of the system to be geauinely
nonlinear) may also occur; these phenomena are familiar, for example, to gas
dynamicists.

23 2x 2 Hyperbolic systems of conservation laws

As discussed above, N x N hyperbolic systems of a general nature are normally
hard to analyze. When N = 2, however, the Riemann problem is well understood.
The Riemann problem was solved ([46], [47]) for genuinely nonlinear 2 x 2 hyper-
bolic systems, showing uniqueness for the case where the solution was required to
satisty the Lax entropy inequalities. The work of Liu [26] showed that the Oleinik
entropy condition for a single equation could be extended in a natural way to
encompass 2 x 2 hyperbolic systems when the condition of genuine nonlinearity
was telaxed. As far as the 2 x 2 hyperbolic Riemann problem is concerned, the
general structure of the solution is well established, and consists of constant states
joined by a maximum of two waves, which may be either shocks or rarefactions.

2 4 The viscous profile

One of the central issues concerning the study of mixed systems of conservation
laws is embodied in the idea of a viscous prafile The strictly hyperbolic 2 x 2 system

w, -+ f(w), =0 (1n

is “inviscid” in the sense that it contains no (dissipative) second derivative terms. It
is common experience that, for example, in gas dynamics, typical shocks have
a width of only a few mean free paths. For this reason it is normal to ignore
dissipative terms such as viscosity and admit jumps in the solution Although this
approximation is adequate for all practical purposes, it is undesstood that the
inviscid solution arises, in some carefully-defined mathematical sense, from a fully
viscous problem. Suppose that a shock solution (Wi, wg;s) to Eq. (11) connects
a left state L to a right state R with a shock of speed s that satisfies

s(wy, — wg) = f(w.) — £(wz)
and the standard entropy conditions. Is it then possible to “determine the structure

in the shock” by adding a “viscous™ term to the right-hand side of (11}? Evidently if
a solution of

w, + f(w)x = Wiy (12)
can be found in the form of a travelling wave w = w((x — st)/e) which tends to
(Wy, Wg; 5) as & — 0, then the inviscid solution may be regarded as “valid” Inserting

the travelling wave into (12), we find, after an integration, that

—sw+fw)=w —C,
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the constant of integration being given in terms of wy, (or equivalently, because of

- the jump conditions, in terms of wg} by

C=swy —f(we}.

The problem has therefore been reduced to solving the ordinary differential
equations

W =V(w), V@) = —sw—w)+fw) — f{w)

subject to suitable boundary conditions as § — 0. Topological methods may be
employed ([45]) to prove existence of the viscous profile provided the quantity
|w. — wg| is sufficiently small; put another way, shock solutions of hyperbolic
systems are guaranteed to possess a viscous profile provided the shock is weak
enough.

We shall see that, on many occasions, mixed problems lead to novel types of
shocks that are not present in hyperbolic systems. The existence of a viscous profile
in such cases forms a key piece of evidence that these unconventional discontinui-
ties deserve the status of physically meaningful results, rather than mere synthetic
mathematical inventions.:

3 Mixed systems of conservation laws in industrial problems

Systems of conservation laws which contain elliptic regions of phase space occur in
the modelling of many processes that are of interest to industry. In this section we
identify a selection of such cases and explain the modef formulation that leads to
a mixed system. '

]

3 1 Transonic flow

The study of transonic flow gives rise to what may be thought of as the classical
mixed problem. Consider first the case where the two-dimensional steady inviscid
flow of a compressible gas past an aerofoil is to be determined Denoting the
velocity by g = (u, v), the speed by g and the local sound speed for a given préssure
p and density p by a® = dp/dp, what will be the qualitative details of the flow for
a free-stream Mach number M, = ¢,,/a,, of approximate size 06-09? It is
a matter of experience (which may, under ideal conditions, be confirmed simply by
watching the wings of a commercial jet airliner during level flight) that whilst the
majority of the flow around the aerofoil is subsonic (M < 1), there exist small
Tegions (typically above and below the more central regions of the aerofoil) where
M exceeds 1 and the flow is therefore supersonic. Inevitably, therefore, we are led to
the consideration of a mixed problem where the equations change type from ellipiic
to hyperbolic when certain regions (whose locations are unknown at the outset) in
the (x, y)-plane are entered.
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The reason for the mixed nature of the problem is easily seen when the
equations are analyzed, for, writing the continuity, momentum, and energy equa-
tions as

(pu)e + (pv)y =0,

uux-l-uuy:——[;px,
uvx+vvy=—5py,
L ooy MY Loz L O
- — =10
(2pu(u +U)+Y—1x+ 2pv(u +v)-!-y_1y. )

and assuming the perfect gas law so that p = pRT where R = ¢, - ¢,, it 18 a simple

matter to express the equations in the form (1) and determine the eigenvalues. This
gives

a=2 (twice)
u

and

i_uvic«/qz—cz

ul —as ’

and it is immediately obvious that two of the eigenvalues are real for supersonic
flow and complex for subsonic flow. We note in passing that there are other
formulations of the transonic flow problem such as the TSD (transonic small
disturbance) model where the aerofoil is assumed to be slender and the flow is
predominantly in one direction and the full potential model where we assume that
the density is a given function of the velocity Even when such simplifications are
applied however, the mixed nature of the equations still persists.

Since the transpnic equations are elliptic only in two space, rather than one
space and one time variable, they will not be studied in great detail below. It is
worth mentioning, however, that systems that are mixed in space only occur also in
other physical problems, typical examples being plasma modelling [55] and granu-
lar flow [34].

3 2 Models for traffic flow

Chronologically, probably the first modelling study apart from transonic flow
where conservation laws of mixed type were encountered was that carried out by
Bick and Newell [3] who considered the case of bi-directional traffic flow on an
undivided highway Denoting the densities of vehicles in the right- and left-hand
lanes of the highway by p and ¢ respectively, and assuming that associated average
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velocities in the lanes are given by U = O and ¥ = 0, then a simple “conservation of

» cars” argument leads to the system

p:+(pUke=0, g +{gV).=0. (13)

This system of two equations in four unknowns must somehow be closed For
unidirectional traffic it has long been known that for many practical traffic low
scenarios the linear relationship U = U, — ap, where « is constant, gives reliable
results. An obvious generalization to this constitutive law may be proposed for the
bi-directional highway by assuming that

U=V,—ap—fq, V=—-Uy+ag+fp (14)

where o > 8 > 0 were taken to be constant. (Amongst other desirable properties,
this choice ensures that U(p, g) = — V(g, p} so that both lanes are physically
identical)) After eliminating U and ¥, (13)may be written in standard conservation
law form, and we find that the roots are real whenever

(p* + ¢*)Qat + B)? -+ 2pq(do’ — B2 + daf) + (Us + Vo)’
- 2Up + GNP + 20)(Uq + Vo) = 0

This representé the region outside an ellipse in phase (p, g) space which may be
conveniently written

CP2+DQ*=E

where

P = (p +q - (ﬁ +42:&(i°g)r VO))/\@, 0 =(a— /2
and

BAUs + Vo)
dofe + By

The relevant ellipse therefore has major and minor axes of length (U + Vo) B/

(\/gct(d + B)) and (U, + Vo)// 20(e + ) respectively

C=8ala+p), D=2p*, E=

3 3 One-dimensional unsteady flow of a van der Waals’ gas

One of the most frequent explanations given for the existence of a mixed conserva-
tion law system is that it has arisen from a complicaied and poorly understood
model. The next example illustrates that mixed systems may arise from the most
well-established of models when ostensibly reasonable changes are made to the
constitutive laws.

We consider the one-dimensional unsteady flow of a compressible gas of
density p, velocity u and pressure p Suppose that the absolute temperature Tg of
the gas is constant (isothermal flow) and the relationship between p and g is




30 Alistair D Fitt
assumed known. The equations of motion are

pe+ (pu), =0, (15)
Px
ut—}-uux+—5—0 {16)

which may be regarded as two equations for the two unknowns p and u. It is easily
confirmed that the eigenvalues of this system of conservation laws are given by

A= =
U+t dp

For the familiar case of an ideal gas, we have p(p) = RpTs where R is a universal
constant, and the conservation laws are therefore hyperbolic. More generally, it is
clear that hyperbolicity is assured so long as the ‘gas law’ is of such a form that
dp/dp > 0 for all values of p under consideration.

1t is known, however, from thermodynamic considerations that the ideal gas is,
as the name suggests, very much an idealization as far as the real behaviour of gases
is concerned; theoretically it provides an accurate description only in the case
where the gas in guestion is composed of infinitely small molecules that behave like
perfectly elastic bodies upon impact. More accurate constitutive laws are available,
and an example of one such law is due to van der Waals who proposed an equation
of state which not only allowed for the fact that the volume of a molecule is finite,
but also took into account the presence of attractive and repulsive intermolecular
forces. Writing the van der Waals law as

_ RTGp 2
plp)=1— by % 17
where g and b are constants, (b is normally termed the covolume constant) we have
T — = — 2ap.
&~ (T—bpy ¥

For low enough temperatures the pressure/density curve is therefore non-mono-
tonic, and there will be an elliptic region in phase space.

We note in passing that Egs. (15) and (16) may be written in a much simpler way
as the system

Uy — Uy = O, (18)
u,—o(u), =0 (19)
To prove this, set v = —log p and identify t with the standard convective derivative

O, + ud,. We then retrieve (15) and (16) with p, = p.o'(—logp).

Fuller comments on the presence of the elliptic region will be made in due
course, but it is worth noting that in an experiment it would prove difficult to
ensure that changes in pressure were compensated for only by changes in density.
Moreover, we must distinguish carefully between temperatures for which the gasis
a true vapour and those for which it becomes a liquid. Is it possible therefore, that
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the system has proved to be of mixed type simply because the concept of an

+ isothermal van der Waals gas is not physically very realistic?

Evidence that this is not the case may be gathered by looking at the non-
isothermal case The three equations of motion are

pr+ups + pu, =0,

ut+uux+&=0,
P

(PE) + [1(pE + p)]x =0

where E = e +3u? and e is the internal energy As well as the definition of p given
by (17), we are now required to define e as a function of T and p and for a van der
Waals gas the relevant relationship takes the form

e=c,Ig—ap.

It is easily confirmed that the eigenvalues of the system are given by 4 = « and

pa -+ plp dp
and it is evident that adding the effect of non-isothermaliiy has served only to

introduce an extra eigenvalue A =u. Apart from this change the sysiem still
exhibits the same mixed character as the original model.

3 4 Phase boundaries in elastic bars

The propagation of phase boundaries in elastic bars was considered by James [22].
Such phase boundaries (which have commonly been observed in natural rubbers,
polymers, various metals and other more exotic substances) occur when the
stress-deformation relation for a one-dimensional elastic material is not monotone,
and resemble shock waves. If an elastic bar is described by a single Lagrangian
co-ordinate X, —L < X < I, and displacements of the bar are functions y{(X,t),
then, describing the stress that corresponds to a deformation u by p(u), the equation
of motion of the bar is evidently given by

Ya = (P(yxNx (20)

Setting u = yy and v =y, (20) may be rewritten as the first-order system of
conservation laws

w—vy=0, BN
v~ (p)x = 0. (22)

We note that, with minor changes of notation, (21) and (22) are identical 1o {18)
and (19). For this reason, this problem and the van der Waals flow deseribed above
have traditjionaily been bracketed together, and similar remarks apply concerning
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the existence of elliptic regions of phase space when the constituiive law is
non-monotone.

3.5 Oil recovery

The presence of complex eigenvalues has caused major problems in the modelling
and vnderstanding of the fluid flow occurring in petroleum reservoirs. A revealing
study of the equations concerned and properties of solutions to these equations was
presented by Bell et al. [2]. The most popular model for flow in such reservoirs
assumes that there are three phases present; oil, water and air. These components
are assumed to flow within a porous medium, so that D’Arcy’s law is applicable.
Counsidering only one-dimensional flow and ignoring the effects of gravity, com-
pressibility and inhomogeneity, the three phases are assumed to completely fill the
available pore space. Following Bell et al we dehote the phase saturations by s,
s, and s, (the subscripts referring to water, oil, and gas, respectively) and the phase
velocities by v; (i = w, o, or g). If the medium has porosity ¢ and the pressure of
each phase is p;, then using conservation of mass in each phase and employing the
D’Arcy law in the form

_ Kk o
o 0x

by

where y; is the phase viscosity, K is the absolute permeability of the medium and
k. is the relative permeability of each phase, it is possible to use the relationship

Syt 5, +s,=1

to eliminate one of the phase saturations. Removing s, gives the system of conser-
vation laws

5 + Asx = 0 (23)

where s = {s,,,5,)7 There is one further assumption which is necessary to derive
{23) that has so far not been mentioned, but is worthy of special note. This concerns
the phasic pressures. Obviously some law connecting the pressures must be
postulated to close the system, and tn (23) it has been assumed that the effects of
interfacial tension may be ignored, so that the phasic pressures are all equal. It will
become evident during the discussion below of models for two-phase flow that the
“equal pressures™ supposition ig a recurring theme in mixed problems

The matrix A appearing in (23) has a particular form; defining A; = k;/u;, we
find that

_ 1 (Ag + A} Aw — Awlo,w — A Ay + A0
B (Aw + /10 + lg)z "Agu(’v + ’lo,w) (’Ilw + AD)’I’B - 'ls"{'ﬂag

Here primes denote differentiation, whilst 2, ,, = 9,/0s. and A, , = 04,/0s,; the
assumption has also been made (based on “reliable experimental data™) that

k. and k., (and therefore A,, and A,) depend only upon s, and s, respectively, whilst
4o 18 a function of both s, and s,,.
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The model must now be closed by specifying the relative permeabilities. Bell et
- al. considered the particular case where

|- (1 = Sy — Sg)krowkrng
T—s)d —s)

with
k, = 1095k 3516687 _ (0952 51668 | [ — (52551 0% + 0.475s] ©*

and
krow = 195(1 — SW)S 28 _ 0_95(1 — Sw)ll 284,
Krog = 119(1 — 5,206 — 0.19(1 — 5,)* %4,

these values having been derived from experimental correlations. A standard
characteristic analysis shows that a closed elliptic region is present in (s, sg)-space.
This should not be regarded as having arisen from a particularly unwise choice of
relative permaeability model, since for many other experimental correlations elliptic
regions also exist. We note, however, that essentially the mixed nature of the
problem arises from a “closure law”, a recurrent theme in mixed problems.

3.6 Shear-thinning flow

An example of a system of equations that is normally elliptic, but becomes
hyperbolic in a certain limit, is furnished by the equations of inertia-free shear-
thinning flow Assuming that such fluids bave a stress tensor Tj; of the form

Tij = —péij + ’l'.'ij
where
75 = pKjy;, K= | (Guddl T

and p denotes pressure, (u, v} are the velocity components, p is the {constant)
“consistency index”, jj, is infinitesimal rate-of-strain tensor, and ¢ is the “shear-
thinning” parameter, the non-dimensional equations of motion are

—Dx + (Kux)x +% (K(u}’ + vx))y =0, (24)
— Py + (KU)'))' +% (K(uy -+ Ux))x = Os (25)
43y = 0 26)

Determining the characteristics A = dy/dx in the normal way, we find that
(1* + e + 4R%) + 8R(A> — D — D+ A*BR* 2 — L) + 4 —25) = 0

where R = u,/(u, + v,). For the case ¢ = 1, corresponding to Newtonian flow, the
eigenvalues are +i, +i and the system (being, of course, the standard slow flow
equations) is elliptic. It is also easy to show that for any e > 0 every eigenvaloe is
complex. For certain types of clay, however, the parameter ¢ is close to zero, and it
may be shown in these cases [4] that boundary layers exist close to any solid walls
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in the flow. To determine the “outer” solution, ¢ must be set to zero, in which case
the eigenvalues take the {repeated) purely real values

lili\/1+4R2

2R

In fact, a closer examination of the equations in the case ¢ = 0 shows that the
system may be written as two decoupled hyperbolic equations.

3 7 Two-phase flow

Of all the industrial problems that have spawned mixed systems of conservation
laws, two-phase flow is probabiy the most studied and the most controversial.
Although Sect. 6 will address the problem of two-phase flow modelling in more
detail, a simple model is examined here for the purposes of completeness.

Consider an unsteady one-dimensional two-phase flow where the continuous
phase is denoted by the subscript 1 and the discrete phase by a subscript 2. Using p,
u and p to denote density, velocity and pressure tespectively, and employing « to
denoie the void fraction {x; + ¢ = 1), 2 popular model for inviscid incompressible
flow with no interphase transfer (see, eg, [13]) is given by

(p1o1): + (proqug): =0, 27
(p202); + (paoatiz)h =0, (28)
(proattr): + (proguei)e + aypy =0, (29}
(p2otatiz)s + (P20012)x + 22, = 0. (30)

Since the flow is assumed to be incompressible, this represents a system of four
partial differential equations for the four unknowns ¢y, @, 4z, and p. It will be
noted that, in order to close the system, it has been assumed that a single pressure
p suffices to describe the pressure in both phases It becomes clear, however, that
the model is defective, for a standard calculation shows that the characteristics are
given by A = 0 {twice; corresponding to incompressibility) and

“ oy =P+ — 2P =0, 6D
P2 P

If u, = u, (a rather trivial case) then clearly all the eigenvalues are zero, but in all
cases where the velocities differ obviously the solutions to (31) are complex.

3 8 Pursuing bivlogical populations

Suppose that Ufx, £) and V(x, t) are the densities of two biclogical populations, and
that the species U is being pursued by the species V" along a straight line course It is
assumed that one population encourages the other to escape by the mere act of
pursuit, whilst the other population, by this act of escape, provokes the chasers to
exert themselves still further. It seems reasonable {0 assume (and many classical
models have been based upon such assumpiions) that the Us escape from the Vs
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at a rate proportional to the spatial gradient of the ¥’s, whilst the Vs attempt to

- approach the U’s at a rate proportional to the spatial gradient of the U’s

Therefors, with o, f, v, and & constant, the population densities evolve according to
U: + (GC - BVx}Ux = 0’
Vt + (7 + 5Ux)Vx =10

Equations of this type were studied by Hsiao and DeMottoni [19]. Rescaling
x and t and performing the transformation U — U /8, V — V/f, setting U, = w and

V, = v we find that (with a = 3/o)

u,+ [u(l — )], =0, (32)
b+ [o(a + )], =0 (33)
Forax>1, this system of conservation laws is elliptic when
D=@w—u+a—17%+4du@a-1)

is less than zero, and strictly hypérbolic when D exceeds zero.

3 9 Relativistic radiative transfer

Qur final example emphasizes the fact that mixed systems of conservation laws
may arise from completely unexpected sources. A study of general relativistic,
frequency-dependent radiative transfer in spherical, differentially moving media
was carried out by Turolla et al. [53] in which the moment equations were written
ag a system of conservation laws. Space does not permit an explanation of all the
intricacies of the model, but the introduction of psTF (projected symmetric trace-
free) tensors allows two independent partial differential equations to be written for
the first two moments w, and w; of the radiation intensity Physically, wy repres-
ents the radiation energy density, whilst wy denotes the radiation flux measured by
a co-moving observer. In terms of the independent variables t = logr (the radial
distance r may be thought of as being timelike 1n this treatment) and x =logv
where v denotes frequency, the equations may be written

i

(U2 — Dyweg: + (F — y;(Uz - 1))1«1;0Jc _% Gwie+ Cp =0, (34)

(U2 = 1wy, —z U?Fwo, + (G - y;(Ui _ 1))w1x +C,=0 (35)

Here v denotes velocity, ¢ is light speed, U? = v3(f5 + 1/3)/¢?, vy = v/1 — r,/r (the
total energy per unit mass), a prime denotes a derivaiive in the r direction, r, is the

gravitational radius, y = /1 —v%*/c?, and F, G, C;, and C, are functions of the
“Eddington factors” fu and ¢z which may be regarded as known functions and
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satisfy 0 < fp < 2/3,0 < gg < 2/5 A standard characteristic analysis of (34) and (35)
reveals that the relevant quadratic has discriminant
UZ

o (UX(F? — G?) + 4FG),

and although for many choices of the Eddington factors the system is strictly
hyperbolic, it is possible that D may become negative. In particular, when the
gravitational field is strong encugh and/or the gas flow is almost in free-fall, the
equations can become elliptic even for fairly modest values of v/e

4 Discussion and a gualitative comparison of the models described

Tt has been shown above how mixed systems occur in a variety of industrial and
applied mathematical problems. It is natural therefore to ask what effect the
appearance of complex characteristics is likely to have upon the analytical and
numerical solutions of such conservation laws, From the simplest possible stand-
point, we may anticipate that systems which possess complex characteristics will
require different boundary conditions to hyperbolic problems. Presumably mixed
problems require a specification of boundary and initial data which is somehow “in
between” hyperbolic and elliptic problems. However, to quantify the proportions
of Cauchy data and elliptic-type boundary data which are required for a given
mixed problem is clearly a harder problem We may also anticipate ill-posedness,
since for example a Dirichelet problem for an elliptic system in time and space
would necessarily involve the specification of both initial conditions and boundary
conditions at later times, thus violating causality. Numerical problems may also be
expected and it seems highly likely that even simple schemes that have proved
reliable for hyperbolic equations such as the Lax-Friedrichs or MacCormack
method {see, for example, [10]) may not be appropriate or even convergent for mixed
problems. Tke same may well be true for more sophisticated schemes such as TvD
methods [48] but it is likely that here the analysis will be even more complicated.

All of these problems arise when one of the independent variables of a mized
system is timelike. It is therefore the case that, although the transonic flow problem
was included for the sake of completeness, it occupies a completely different
position in the spectrum of mixed problems to the other models described above.
Indeed, for the transonic flow problem, it is clear that the problem has an
inherently mixed nature and any model that did not reflect this would have to be
instantly rejected. Moreover, for this problem the remarks concerning ill-posedness
simply do not apply; there is no reason why boundary conditions should not be
specified on boundaries other than x = 0 say, and no question of causality being
violated Above all, we may be satisfied on the grounds of common experience that
the appearance of both hyperbolic and elliptic regions in the flow is “physical”. The
same cannot be said for many of the other problems discussed in the previous
section. Naturally, if we desire to solve the transonic flow problem with accuracy
the mixed nature of the problem requires careful handling, for not only must it be
ensured that only the physically correct shocks are selected, but also any numerical
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method that is employed must be able to cope with the change of type of the

* governing equations The fact that entropy criteria, when suitably generalized,

along with the existence of viscous profiles may still be used to select the “physically
relevant” solution to the transonic flow equations was demonstrated by Mock [28]
who was also able to prove a number of results concerning uniqueness. Numer-
ically, many different methods [11,29] have been successfully used to analyse
transonic flows-

The traffic low model is another matter altogether. Bick and Newell [3] were
evidently surprised at the appearance of this non-trivial elliptic region of phase
space, and commented, “As yet we have found no satisfactory explanation of why
the equations should be elliptic nor any satisfactory explanation as to what one
should do about it.” An appealing explanation of the non-hyperbolicity is that the
constitutive laws (14) are somehow at fault, but it is a source of some worry that
Bick and Newell were able to show by elementary means that the region of
ellipticity persists under much more general constitutive laws. They did not pursue
the point, however, preferring to consider properties of the solutions of the
equations only for the cases where the phase paths avoided the elliptic region. One
final comment is apposite; the model that was employed treated the discrete entities
of cars as a continuum, so that in some sense “averaging” was employed. It will
become apparent that the use of averaging frequently presages the occurrence of
mixed type conservation law systems

The equations for flow of a van der Waals gas and those for elastic waves
obviously pose closely related problems. One fact is clear for both problems,
however; if only the standard Rankine—Hugoniot and entropy conditions are used,
then non-uniqueness will resuli. As a result of this, much work has been carried out
to try to formulate admissibility criteria that are capable of selecting the “physically
correct” solution. One criterion, based upon physical grounds, was suggested by
Hattori [14], who insisted that, for a solution to be admissible, the entropy should
decrease at the greatest rate possible Using this, he was able to show how to
construct solutions to the mixed problem. A further study [15] showed that the
entropy rate admissibility criterion was also relevant for the nonisothermal van der
Waals problem for solutions that consisted only of a backward and a forward
wave, a contact discontinuity and a phase boundary. As this by no means covers all
solutions to this problem, however, the entropy rate admissibility criterion cannot
be regarded as a complete answer to the admissibility problem.

Returning to the standard van der Waals/elasticity problem, many other
studies have concerned themselves with the issue of admissibility. Shearer [42]
used the viscosity admissibility criterion, but was able to exhibit Riemann prob-
fems that possessed two admissible solutions.

The inclusion of both viscous and capillarity effects in the formulation of an
admissibility criterion was considered by Slemrod [44], who analysed solutions to
the equations

w,—u, =0,

U, + p(W)y = By — 82 AW, — 267 DWWy,
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where A and D were congtants. Arguing that the standard viscosity admissibility
criterion was too restrictive in that it did not allow propagating phase boundaries,
he showed that, under certain special circumstances, such boundaries were per-
miited 1if the viscosity/capillarity condition was employed.

Another approach to the elasticity/van der Waals flow problem has been to
argue that it is physically incorrect to specify the pressure as a function of the strain.
Instead, it should satisly a conservation law. This approach was pioneered in [51]
and a specific case of the elasticity problem was examined by Pitman and Ni [32].

They proposed that the standard equations for the wvelocity v, strain u and
pressure p

,—v,=0, n,—p,=0 ‘

should be closed not by assuming that p was given by some reference pressure p,{1)
(the classic case being p, (¥) = u?/3 — u, ellipticfor ~—1 < u < 1), but by a conserva-
tion law of the type

(p — E*u)= —(p—pit

Here E 15 the Young's modulus of the material and 7 is a relaxation time. This
changes the eigenvalues of the system to 0 and + E, a convenient result which was
exploited to allow stable numerical results to be computed As we shall see, the
approach of “adding some extra equations” to ensure hyperbolicity has frequently
been employed {with varying degrees of success) in the two-phase flow problem.

The number of different methods that have been used to analyse the van der
‘Waals flow/elasticity problem makes one fact quite clear; there is a general lack of
agreement concerning the right way to approach this mixed system

The mixed nature of the oil recovery problem has had profound implications,
for numerical solutions to such equations are much sought-after by industry For
this reason, many practical calculations have simply proceeded using ad hoc
methods, obtaining numerical results by any means possible: Another alternative is
to modify the experimental correlations that determine the relative permeabilities
to ensure that no clliptic regions are present Under the assumption that the
relative permeabilities were specified in such a way that the system is hyperbolic,
Trangenstein and Bell [52] showed that fronts may be computed successfulily.
Another alternative to changing the correlations is to change the model, and
a study by Stevenson et al. [49] which addressed general methods for the problem
suggested that capillary or diffusive pressure terms should be included in the model
to ensure well-posedness. An investigation into the essential nature of the mixed
problem was carried out by Keyfitz [23] who proposed a 2 % 2 analogue problem
that possessed many of the features of the oil recovery problem. She concluded that
in some cases the Riemann problem could be solved.

Time is not one of the independent variables in the shear-thinning flow
described by Egs. (24)-(26), and so, as in the transonic flow case, the normal
comments concerning ill-posedness and violation of causality do not apply. The
example has been included, however, to indicate that, even when a change of type
occurs in what might be termed as benign circumstances, it can nevertheless cause
major practical difficulties. In this case, to analyse the zeroth-order approximation
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to the flow for small &, we are forced to examine a system whose character is

. different to that which is retrieved for any & > 0 In a sense, the normal problems of

mixed systems have been reversed in that the “full” system is elliptic, but the limit is
hyperbolic. Real characteristics must therefore somehow be “embedded” in an
elliptic domain. Work in progress on this problem suggests that, though this can be
accomplished, the details are complicated. ‘

The two-phase flow equations (27) to (30) have been used as a model for many
different flows, ranging from stratified flow (where there is only one phase bound-
ary) to bubbly and gas/particulate flows. Since it is unreasonable that the same set
of equations should describe such patently different flows, it may be regarded as
hardly surprising that the model possesses some awkward properties. Two-phase
flow models will be treated in detail in subsequent sections, and for the moment we
observe only that, since elementary hydrodynamics asserts that the pressure on the
surface of a sphere in a uniform flow differs from the pressure at infinity, the equal
pressure hypothesis that has been used to close the model (27)—(30) is clearly
wrong

The simplicity of the model that leads to the population dynamics equations
(32) and (33) shows how easily and naturally mixed systems may arise. The familiar
mixed system properties of a simplified constitutive assumption and a model that is
averaged in some sense arise once again, and, as usual, the goal is to make some
sense of Riemann problems for the system It was shown in [19] that is possible to
combine the Lax and Liu—Oleinik entropy conditions to propose a Gec (general-
ized entropy condition) which is enough to guarantee existence (but not unique-
ness) of the solution to the Riemann problem. When a criterion was added stating
that the sum of the strengths of all jumps in the solution should take the minimum
value amongst all possible jumps belonging to a certain set, uniqueness could also
be demonstrated,

As far as the relativistic radiative transfer case is concerned, the authors do not
comment at length upon the appearance of a mixed system, save to point out that
the presence of complex characteristics may have a profound influence on the
boundary conditions that have to be imposed. Bearing in mind the fact that the
system could be of mixed type for a range of apparently reasonable physical
assumptions, and also that the model represents a simple attempt to describe
a hugely complicated range of phenomena, it seems that, as in the case of two-phase
flow, the problem can be best categorized as arising due to modelling concerns. It
should also be noted that only two of the (theoretically infinite in number) moment
equations were studied. Evidently if more were used and these contained sub-

models that introduced back-coupling terms, yet further changes in type could
occur in the equations.

The role of viscosity

Before discussing the work that has been carried out on prototype mixed systems, it
is pertinent to discuss the role of viscosity in mixed systems A line of reasoning that
has frequently been proposed to circumvent all the difficulties of mixed sysiems has
been simply to argue that, in reality, physical systems actually involve dissipative
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mechanisms such as viscosity. The introduction of higher derivative terms into the
models is therefore necessary if they are to be physically realistic, and for this
Teason any time spent studying inviscid models and all the attendant complications
of mixed systems is wasted,

There are at least three good reasons for rejecting this line of argument, which
may be summarized as follows:

1 Mixed systems arise in such a range of applications that it may not be clear
just what the correct dissipative mechanism actually is. As an example, in the
population dynamics model discussed above it is not at all clear what physical
mechanism would play the role of viscosity.

2. Tt is common expenence that, for single-phase fluid flows, viscosity may
essentially be ignored except in the boundary layer close to a solid boundary in the
flow. The inviscid theory of shock waves has proved eminently capable of accurate-
ly prechctlng the properties of viscous flows everywhere except for the thinnest of
regions, where viscosity is important If the single-phase inviscid theory is so
successful, then why should inviscid theory for multi-phase systems be so fatally
flawed, and why shouid we be forced to include small viscous terms to have any
hope of obtaining a well-posed problem?

3. Consider the system of equations

Uy + Pr(UO)Ux = Blxx
Uy — Uy = 5vxx

where the nonlinear term p(s), has been “frozen” at v, and ¢ and & represent small
dissipative terms. We ezamine the effect of introducing a Fourier mode
{1, 0)7 = (1, v0) ¥ exp(wt + ikx) into the solution. A simple calculation shows that
for non-trivial solutions we require that

(0 + ek) (@ + 6k*) — k?*p’ =0,
and thus

_ etk K + 8)2 — 4(edk* — p'k?)
5 .

Therefore Re(w) >0 whenever k2(¢ + ) < 0 and/or p’ > ¢8k* The first of these
conditions simply confirms that negative viscosity leads to an ill-posed problem,
but the latter condition shows that, if ever p'(vg) > 0 (and thus the inviscid system is
mixed) then there are always unstable wavenumbers Many other similar caleu-
lations may be carried out including extra higher order derivative dispersive terms
(representing, for example, capillary effects) but the general conclusion is that the
complex eigenvalues of the inviscid system may “pollute” associated viscous
systems, a fact that may easily be confirmed via numerical calculations.

5 Prototype mixed conservation laws

The mixed systems discussed above are all complicated and in most cases it is
extremely unlikely that useful closed-form solutions can be determined. In order to
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understand some of the complicated behaviour that such systems may exhibit, it is

. obviously an attractive idea to consider paradigm mixed problems This approach

has been followed by a number of authors, in many cases with some unexpected
results. Some illustrative mixed prototype problems will be discussed below, and

some attention will also be given to the related problem of nonstrictly hyperbolic
mixed systems,

51 Mixed elliptic/hyperbolic prototype systems

Prototype equations that have been studied have consisted almost invariably of
2 x 2 systems whose flux terms are chosen to give rise to specific mixed regions in
phase space. To allow shocks to be analysed for mixed systems, some further
generalizations of (8} and (9) are required. In most (but not all) examples, the
Rankine—Hugoniot condition is used unchanged in the form (8), but clearly for
complex eigenvalues the entropy condition can no longer be used in the form (10)

The most common extension of the entropy condition has become known as
the Liu—Oleinik criterion [26]. This asserts that, for all w on the curve in phase
space joining wy to wg (the Hugoniot curve), it must be true that

S(WL) WR) = S(st W) -

Although this'is an obvious extension of the Lax condition, we note that it relies
upon the Hugoniot curves being both connected and non-intersecting.

The Lin—Oleinik entropy criterion was used to study [16] the Riemann prob-
lem for the prototype mixed system

w, + f(w), =0

where w = (4, v) and f = (v —u® + 2pv, 2up — 2pu). The specific construction of
this system ensures that the equations are elliptic inside the region E, where
u® + v* < p? and hyperbolic when u? + v? = p2.

Even for the relatively simple elliptic region defined by this problem, it tran-
spires that the combination of shocks and rarefaction waves required to effect
a complete solution of the problem is rather involved. Nevertheless, it can be
constructed. Although (as might be anticipated) solutions are not necessarily
continuous in (#, v ) and (ug, vg), all approach the “correct” solution as p — 0, and
in many of the different regions that must be considered the solution is essentially
unique. However, when the left state is close to £, a connection may be made to the
right state in two ways, for as well as the classical Lax solution another solution
may be constructed using five shocks to traverse around E, Although it might be
possible to establish uniqueness via viscous profile arguments, the calculations
required are evidently formidable,

A related prototype Riemann system was studied by Holden and Holden [17]
In this case, the region of ellipticity in phase space was the interior of the ellipse
u? + 160% = 16r* Once again, the generalization and effective weakening of the
entropy condition that is required o assure the existence of a scolution leads to
non-uniqueness in sorme regions; other regions were also found where there was no
solution. The solution was further complicated by the need to include multiple
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composite waves. As an example, in some regions rarefaction/shock/rarefaction
(rsr) and rarefaction/shock/rarefaction/shock (rszs) structures are both necessary
to obtain a solution, emphasizing the contrast with the maximum of two waves
required for the strictly hyperbolic 2 x 2 Riemann problem.

A more general study of such problems was carried out by Holden et al [18],
who studied qualitative features of the solution of the Riemann problem for
a generic mixed system with both hyperbolic and elliptic regions. They were able to
show that if the left and right states were in the elliptic region and the elliptic region
was connected, then the solution necessarily contained parts which lay outside the
elliptic region. In contrast, if both states were outside the elliptic region the solution
did not enter the elliptic region. Although this is an interesting and potentially
valuable result, they were also able to show that the latter property did not hold for
general Cauchy data, thus further complicating the issue.

Other mixed elliptic/hyperbolic systems have also been examined: the study by
Fitt [7] gave the solution to a prototype p-system which was hyperbolic in the
lower half-plane and elliptic in the upper half plane. Shearer [40] analysed yet
another mixed' p-system. where the eigenvalues were complex in a strip in phase
space, defining shocks to be admissible if either the Oleinik entropy condition was
satisfied, or if the shock speed was zero. Another very complicated structure
emerges, some 18 regions being necessary. In this case, the price that had to be paid
to display a complete solution to the problem was the inclusion of stationary
shocks; no viscous profile could be constructed for these, however, and this gives
rise to serious worries about the physical basis of such discontinuities.

Taking account of these and the many other mixed systems that have been
analysed, no clear picture emerges. It is also evident that, though many diflerent
approaches have been proposed for admissibility criteria, no single condition has
universal applicability. In view of the relative lack of progress for 2 x 2 systems, it is
likely that the solution structure of the elliptic/hyperbolic equations for two-phase
flow will remain unknown for the foreseeable future.

3 2 Mixed systems that are not elliptic

As discussed above, the main focus of this survey concerns systems of conservation
laws that are elliptic in some regions of phase space. Nevertheless, there is also
considerable interest in nomstrictly hyperbolic and mixed hyperbolic/parabolic
systems where the eigenvalues never become complex but are equal in some regions
of phase space. One of the great values of studying such systems is that they may
suggest new shock struciures which may themselves be valuable for mixed hyper-
bolic/elliptic cases.

Keyfitz and Kranzer [25] solved the Riemann problem for a class of hyperbolic
conservation laws that possessed a parabolic degeneracy in the form of a curve in
the (u, v)-plane where the two eigenvalues were equal and possessed a single
common eigenvector. Physically, the most interesting such genuinely nonlinear
prototype system is defined by

Uy =V, W= (u3/3)x5

a8
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which is tantamount to a nonlinear wave equation u, = {¢*u,), with the sound
. speed ¢ = u The degeneracy occurs when the sound speed is zero. To solve the
problem completely, phase space must be divided into twelve regions. In six of
these regions two waves are required, as in the strictly hyperbolic case. However, in
five of the remaining regions the solution necessarily involves three waves, whilst in
the twelfth and final region four waves are required. The “extra” waves invariably
involve rarefactions that begin or end in shocks. Another nonstrictly hyperbolic
class of 2 x 2 systems arising from nonlinear wave propagation on an elastic string
was studied by Keyfitz and Kranzer [24] Once again, there were regions of phase
space where three rather than two waves were required for a solution, though in
this case the weak nonlinearity of the equations guaranteed that one of the waves
was always a contact discontinuity

Tn view of the continuing interest in nonstrictly hyperbolic systems, some at-
tempts at a general classification of phenomena have been made. A general treatment
of nonstrictly hyperbolic conservation laws with quadratic flux functions was carried
out by Isaacson and Temple [21]. Tt is clear from the involved nature of the
calculations required, however, that a complete classification will be a major under-
taking. A particular case with quadratic flux functions was examined by Schaeffer
and Shearer [37], who studied the Riemann problem for a system with flux
f = (au? + 2buv + v7, bu® + 2uv). The eigenvalues are real, but equal at the origin.
(An “isolated tmbilic point”) In alt there are four cases to consider depending on
the constants @ and b, In contrast to the strictly hyperbolic 2 x 2 Riemann problem,
where for a fixed left state the right state plane divides into four regions, here there
are fifteen regions to consider In each region the solution is composed of combina-
tions of shocks, rarefactions and composite waves where shocks and rarefactions
occur together. Furthermore, overcompressive shocks (both characteristics on both
sides of the shock enter the shock) must be introduced for some types of data,

‘When the flux functions are not quadratic, more exotic solution siructures may
be present, as shown by the work of Schaeffer et al. [39] They studied the system

o+ (@ =) =0, (36)

v+ @ u3)x =0, (37)

which has eigenvalues

Ay —utlul/T—y

Thus for y < 1 the eigenvalues are equal only when u = 0, so that strict hyperboli-
city fails on a line in phase space. Using the regularization obtained by adding
terms e, and sv,, respectively to (36) and (37), it 'was possible to show that whilst
for v < 0 the Riemann problem could be solved in terms of elemeniary waves, for
0 <y <1 it was necessary to introduce “singular” shocks Such shocks satisfied
generalized Rankine—Hugoniot conditions of the form

—s{uy, — ug) + ut —ug — (L, —vg) =0

—s(vp — v} + $y(uf —ug) > 0
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The fact that the second condition appears in the form of an inequality (rather than
the usual equality) proved to be enough to specify the inner solution vniquely. One
interpretation of this result is that it confirms that there are many different ways of
slightly altering the admissibility conditions of the solution; what is less clear is the
physical basis for these changes and how they are all related.

The literature on nonstrictly hyperbolic systems is very large, and for additional
information, some of it related to the oil recovery problem, the reader is referred to
[43,38,41]. The main message seems to be that an ad hoc approach is usually
necessary, and systems that are superficially almost identical may nevertheless
possess very different shock structures

6 Mixed systems in two-phase fiow

Although many examples have been discussed above, we wish now to discuss in
particular the specific case of two-phase flow Such flows arise with great frequency
in industrial processes, and hence a huge amount of relevant literature exists
Nevertheless, only a small proportion of published studies acknowledge the prob-
lem of non-hyperbolicity

As far as practically imporiant two-phase flow systems are concerned, it is not
too great a simplification to divide the most frequently employed methods of
solution of such problems into three classes Firstly, it is possible to add terms
piecemeal fo a mixed two-phase flow system, until the system has the properties
that are desired. Secondly, a radical approach may be taken and the modelling may
be re-examined from its most basic assumptions. Finally, the problem of non-
hyperbolicity may be completely ignored, and numerical methods (which, of
necessity, are supplemented with large amounts of artificial viscosity or other
“smoothing” straiegies} may be used.

61 “Modifications’ to standard models

There are a number of ways in which the equations of two-phase flow may be
“modified” in order to circumvent the problem of complex characteristics At the
simplest possible level, it has frequently been noted that if the terms a4p, and a,p,
in Egs. (29) and (30) are replaced respectively with {x;p), and (x,p),, then the
characteristics of the resviting system satisfy the quadratic equation

Aasps + wapy) — 240010100 + uppa0y) + aypauiaspiui —p =0,

and are thus real if

Ploapr + ap2) > prpattyitaliey — 112)>

This imphies that, provided the relative velocity is low enough, the model 15 strictly
hyperbolic. Any potential advantages of this result are completely negated when it
is noted that, quite apart from being based on physically dubious principles, the
equations do not possess steady-state solutions where the void fraction is non-
uniform in space. Significantly, when these “modified” equations were used in
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a study of military internal ballistics, they caused the weapon to numerically “fire”

- before the trigger was engaged.

The single-pressure hypothesis was identified fenrly early on in the study of
two-phase flow systems as the possible root canse of the appearance of complex
characteristics. Because of this, many studies have been carried cut where indepen-
dent phasic pressures were assumed, Of course, if two pressures are used then the
main problem becomes one of closure since the system is now an equation short.
Often closure has been achieved by proposing a “void fraction propagation”
equation. A typical model of this sort was studied (amongst others) by Ransom and
Hicks [36] They modelled compressible planar separated flow in a channel of
width H using the equations

(p10t): + (protyua)s = 0,
{patia)e + (paiatia)x = 0,
(progtts)e + (0103ud)x + 1 Prx + (P — Plot1 = 0,
(pa0iaua); + (202U3)x + GaPax + (P2 — P2z = 0,
oy + oy, = 0/ H

where @ = (u; +u3)/2, T = (p1 — p2)flar + az), P =(p1as + paas)/la: + as), and
a, = ¢,pa, the ¢, being the respective speeds of sound. The eigenvalues of this set of
equations are easily shown to be given by @ and u, + ¢,, and the problem of
non-hyperbolicity does not arise. Although this system looks appealing, there
seems to be no rational averaging procedure that gives the void fraction propaga-
tion equation. There is also some doubt about the reasoning behind the specific
form of the pressure terms in the momentum equations. In addition to these
worries, it may be shown [33] that no uniform steady flows are possible. We
conclude that whilst theoretically and numerically the equations are easy to use, it
is impossible to be confident that the equations provide a good model of the
physical processes that are taking place

There are many alternatives to the possibilities described above. Simply omit-
ting the pressure term from the phase 2 momentum equation (30) leads to a system
with characteristics 0, 0, u, and u, Because of this desirable property many
arguments have been put forward to justify the neglect of this pressure term.
Although there are undoubtedly circumstances where this procedure may be
justified on sound dimensional grounds (for example, the flow of “dusty” gas as
studied in [27,207), there is no compelling physical reason to omit this term for
other two-phase flows.

Another common approach is to assert that “some of the physics has been
omitted”. For example, in the case of two-phase gas-particulate flow, it might be
argued that since “the gas is clearly not incompressible” an energy equation of the
gas phase and some sort of gas constitutive law should be added. To examine the
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effect of this, let us suppose that the variable p; is regarded as non-constant, and
the system (27)-30) is augmented by the addition of the equation

(P11 Eq) + (P1“1u1(E1 + ‘;—)')) + ploauz), =0 (38)
1 x

where E; = e; + u?/2, e; denotes internal energy, and the system is closed by
invoking the perfect gas law Calculation of the characteristics A is simptified in this
case by setting 4 = yc + u,, where ¢® = yp/p and y is the specific heat ratio. After
a standard calculation, we find that y satisfies

y(y* =2V + (VP —q -1+ 2Vy—-V?*)=0 (39)

where V = (u, — u;)/c and g = (a3p,)/(x102). Analysis of the quartic part of (39)
shows that for non-zero V, the equation has four real roots if and only if

V2> (1443, (40)

and if this condition does not hold then there are two real and two imaginary
sound speeds, Although this may be interpreted as having “improved” the situation
slightly, we note that in all examples where both phases are stationary, V will not
satisfy (40) and the solution will inevitably pass through an elliptic region of phase
space

Other attempts to render the equations hyperbolic have used a variety of
additional equations: Ramshaw and Trapp [35] added the effects of surface
tension, Stuhmiller [50] included additional modelling arising from interfacial
pressure terms, Prosperetti and Van Wijngaarden [347 proposed a model specifi-
cally tailored to the case of bubbly flow, whilst Drew et al [5] considered the
additional effects of virtual mass. Taken as a whole, these studies seem to suggest
that the inclusion of no single extra effect can completely remedy the problem of
non-hyperbolicity

The examples given above represent only a small fraction of the totality of
attempts that have been made to solve the problem of complex eigenvalues by
augmenting or changing the equations of motion in a piecemeal fashion. Although
there are obviously circumstances in which this may be a useful approach, it is
evident that, to provide a long-term amswer to the problem, deeper study is
required. The example given immediately above points the way forward; the key
step consists in realising that the averaging process that is inherent in the formula-
tion of any two-phase flow equations has led to terms being “left out” of the
equations Any attempt to correct the situation will therefore require a considera-
tion of the averaging process from its first stages.

6.2 A radical modelling approach

The first successful attempt to rationalize the averaging process and propose a full
set of equations of motion for two-phase flow was that of Drew and Wood {6]
They realized that, rather than adding equations to the system as and when they
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were needed, the modelling needed to be considered afresh. With this in mind, they

. returned to the original low conservation laws in the form

(pZ), = V- (pg2 — J) = pf (41)

Here an arbitrary conserved quantity is denoted by 2, its velocity by q, its density
and molecular flux by p and J respectively, whilst fis the relevant source density (if
any). Merely satisfying {41) for each conserved quantity in each phase is not
sufficient to close the model, since the boundaries between the phases are free. The
model is therefore completed by specifying interfacial jump conditions in the form

fi=pZ(@—q) -+ 3) 411 (42}

where the subscript i denotes an interfacial quantity and ii is the unit normal.
To transform (41) and (42} into one-dimensional conservation laws, an involved
process now ensues The equations are successively ensemble averaged and cross-
sectional area averaged, and the jump conditions are used to ensure that interfacial
quantities are suitably treated. Omitting all the details (see [6,97), the end result for
one-dimensional flow in a channel of slowly-varying width is the equations

1
(cpr)e + = (Ao = T + foe (43)
1 2 1 Re
(o onths)e + = {Aotpatti Cu)x = — (Aot Ty -+ TE))x + My,
A A

4
+ D Olew L - Uil 3 -+ Py fon s (44)

1
(et prlen + €8 + uz/2)), + - (Ao prunCorles + e’ + uf/2))x

¢ 1 e e
= —“A—h Ot L + ) (Ao (T + TV — G — (7))« + G + W,

+ e prlre + e for) + (e + um/2) 1. {45}

In this formidable set of equations, k takes the value of 1 or 2 for the continuous
and dispersed phases respectively, the subscript w indicates wall properties and the
superscript Re denotes turbulent quantities. Ag far as the variables are concerned,
A is the channel cross-sectional area and D the effective channel diameter, T repres-
ents stress, I" is the interfacial heat source, f,, and f, are respectively the bulk mass
and momentum sources, and M, G, and W represent respectively interfacial force,
heat source, and work. The internal energy is denoted by e, source heating by #,
channel perimeter heating by &, and axial energy flux by {. Finally, the profile
coefficients C, and C, account for ditferences between the average of products and
the products of averages.

Equations (43)—(45) provide a model for all two-phase flows; to close the model,
however, a number of constitutive assumptions must be made. Evidently these
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submodels will be different for different types of flow A rational way of approach-
ing the modelling is to nown-dimensionalize, compare terms, and proceed via
traditional asymptotics. The hope then is that if the right dominant physical effects
can be identified and if accurate submodels can be proposed for these effects,
a strictly hyperbolic system should result.

Although this is an appealing programme of work, the complications involved
should not be underestimated. Drew and Wood [6] remark that, “There are 62
variables and parameters described by as many relations: 6 conservation equations,
3 jump conditions, 4 equations of state, 2 equations of phase contiguity and 47
closure conditions. The formulation is nominally complete.” Most importanily, the
emphasis has shifted to a need for accurate submodelling, and if models are
proposed that are insufficiently realistic, then it is hardly surpsising if the result is
a mixed system.

Although some progress has been made in examining the effects of the added
terms in the equations (see, e.g.,, [9]), much work remains to be carried out To give
an example of the sort of result that may be obtained, consider a laminar two-phase
bubbly flow where both phases are incompressible and the effects of interfacial
pressure differences are included. The relevant equations are

(prog) + (proquty) =0,
(P202)e + (padattz)s =0,
(p1otytty)s + (Proaui)s + ipre = —Copr (g — o) 04y,
(paotatia): + (P20t23)s + %aP1x = 02Cepr (g — Uz},

the assumption having been made that the bulk and interfacial pressures are
related according to

-

P2 = Piz = Pur = p1 — Cepy ity — u2)”

where C, < 0 is a pressure coefficient that depends on the shape of the bubbles
Carrying out a hyperbolicity analysis as usual, we find that A = 0 (twice) and

(—otips — %1 }A% 4 2(Copy (g — Uz} + Uppaos + 1y py0a)d
+ Copslty — ua)(—ttathy — gty — ) — Ay poU3 — ezpyu3 =0 (46)
The discriminant D of (46) is given by
Dfey) = —4py (uy — ua)*[—p1 CF + (—aipa + prod + a1ps — p1)Cs + anatapal,

and the equations are thus hyperbolic if the term in square brackets above is less
than zero. To analyse this case, assume that p, = Rp, where R <€ 1 (for gas bubbles
in a fluid typically R ~ 107%). Then since D(0) = —Cypy and D(1) = —p,CZ,
hyperbolicity will be determined by the solutions of the equation

(—C.+R(1+CHa2+ R(—1—Ca; + C2+C,=0.
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For small R, the obvicus perturbation solution gives

o= JT5 G+ REFWELEVIFC) L pay

2C,

Inclusion of the interfacial pressure coefficient thus ensures fiyperbolicity whenever
oy Hes between the above value and unity. For example, with R = 1/1000 and
C, = —7/16 (spherical bubbles) we find that the equations are hyperbolic whenever
075 <y < L. ‘

This result has a number of appealing properties. First, although only one extra
term has been included, the hyperbolicity region in phase space has been increased
in size. Moreover, because of the careful modelling involved, it is possible to specify
exactly the sorts of flows for which this result is relevant, in that the interfacial
pressure non-dimensional group exactty balances the convective terms, and ex-
ceeds all others in order of magnitude. Finally, the hyperbolicity result suggests
a physically correct conclusion, namely, that when the volume fraction of bubbles
becomes larger than around 1/4, another flow regime is entered and other terms
(for example bubble/bubble collision exchange terms) must be included.

6.3 Pragmatic numerical approaches

In the previous discussion a methodology has been outlined that must be regarded
as the correct way forward. Proceeding on purely pragmatic lines, however, it is
clear that for many indusirially-important mixed problems the complexity of the
flows involved may mean that rigorous mathematical modelling will prove to be
either impossible or prohibitively time-consuniing Because of this, standard nu-
merical methods have frequently been used to solve mixed problems, and all the
difficulties assoctated with viclation of causality, ill-posedness, and instability have
been ignored.

Some attempts have been made to examine the numerical properties of mixed
systems. Pego and Serre [317 used Glimm’s scheme for the mixed elasticity
problem, concluding unsurprisingly that strong convergence of the scheme could
not be obtained. They also carried out numerical experiments, observing macro-
scopically random transitions to nearby states and other types of non-convergence.
Affouf and Caftisch [1] considered the viscosity/capillarity regularization of the
van der Waals flow mixed problem in the form

by — U= 0: Wy + p(v)x = BUyy — 5Uxxx

with p(v) = v — (v — 2)*, and were able to successfully compute numerical solutions
for some values of § and & In general, however, the problem has been recognized as
a formidable one.

If we accept that the need to solve real problems makes it inevitable that “dirty”
numerical methods will be used, knowing the extent to which the numerical results
that are produced may be trusted becomes a priority. Although the results may
possess small errors, can we be sure that the predicted general trends are correct? In
general, we must conclude that the answer is no In spite of this, a wide range of
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numerical studies have been carried out on mixed systems of twe-phase flow
equations of varying degrees of complexity. Whilst it is certainly true that many
industries {two specific examples are the nuclear power industry and the defence
industry) solve ill-posed systems of equations daily and base strategic decisions
upon the results, there are also many cases where incorrect predictions are made.
Another problem that may prove just as serious stems from the fact that, in order
to “encourage” numerical methods for mixed problems to comverge, large
amounts of numerical dissipation (“artificial viscosity”) are often employed In the
worst cases, this leads to shock waves that are so smeared as to be almost
unidentifiable. ]

Even bearing in mind the caveats of the above discussion, numerical methods
are easy to carry out and show that, under some circumstances, sensible results
may be obtained. For example, the Lax—Friedrichs method

=

+

-
(=)

wi = 5 (Wie1 + Weoq) — (fk+1 F—1) (47)

for
+ f(w), =0

was used in [7] to solve a mixed p-system where the solution was known For the
method described by (47), x =kdx, t=ndt and the Courant number
% = max | ;| dt/dx was fixed The choice of this particularty simple first order
method was deliberate, and was made so that no artificially introduced dissipative
mechanisms would pollute the results. Because of the low order nature of the
scheme, a large number (typically thousands) of spatial mesh points were used. The
results showed that, when both states lay in the hyperbolic region, the numerical
solution was reliable and accuraie For some cases where one state lay in the elliptic
region and the other in the hyperbolic region, the solution was acceptable, but
displayed unexpected oscillations. (The numerical scheme 1s monctone, and for
strictly hyperbolic systems is thus guaranteed oscillation-free) The general con-
clusion of this study was that, for the majority of left and right states the numerical
solution, though somewhat flawed, described the “known” solution with tolerable
aceuracy.

Numerical studies were carried out on the two-phase flow system (27)—(30) and
(38) in [7,8] Numerically, this is a particularly convenient system to study, since,
although there are five dependent variables, the ellipticity condition is described by
only two parameters, leading to an effectively two-dimensional phase space. The
most striking result of this investigation was that, when left and right states were
chosen close together in the elliptic region, the solution developed large oscillations
(similar to those noted in the three-phase oil recovery problem [2]) which wan-
dered ever further away from the initial states in phase space. The results looked
tolerable for some connections between hyperbolic and elliptic phase space, how-
ever. We conclude that numerical calculations, whilst difficult, may not be imposs-
ible to perform.
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7 Mixed problems: the future

" Ample evidence has been presented that mixed systems of conservation laws

present serious problems 1n many different industrially-related mathematical
models. They do not occur only in isolated and atypical circumstances, and indeed
may appear from the simplest and ostensibly well-motivated of models It is
therefore relevant to consider the future of the subject, discuss what has been
achieved, and indicate what work remains to be carried out,

As far as theory is concerned, it is certain that much more remains to be
achieved. The many studies of prototype systems described above have served to
emphasize that, when an evolutionary system has complex (or even real, but
coincident) eigenvalues, the correct conditions that are required to ensure existence
and uniqueness are not known The fact that so many studies of prototype systems
have used such a wide variety of replacements for the Rankine-Hugoniot and
entropy conditions confirms that there is no real agreement or general theory for
mixed system admissibility criteria, and until such a theory exists the study of
prototype problems will remain in its infancy Unfortunately, most of the existing
evidence suggests that general results are far away at the present time. Mathemat-
ically, the exotic shock structures that form part of mixed system solutions are
highly interesting. There seems to be no suggestion, however, that they have ever
been observed experimentally, and if this could be accomplished then it would
represent an important step.

In the absence of both a general theory and practical evidence, we are led
almost inescapably to conclude that the main cause of mixed systems is almost
invariably defective modelling and that prototype studies, however interesting, will
always give predictions that are far removed from experimental reality. The work
described in Sect. 6 suggests that the real solution is more detailed modelling, but
also indicates that, in many practically important cases, this is likely to be
a formidable task. There is undoubtedly a need for a parametric study of various
different two-phase flow regime models to be carried out, with 2 view to determin-
ing whether, with suitably careful modelling, it is possible to produce hyperbolic
models that arise from a rational asymptotic basis, rather than a piecemeal
addition of poorly motivated equations. If such a study is to be a realistic goal,
however, a great deal of information regarding the parametiers and properties of
iwo-phase flows will have to be used. The lack of availability of such information
could therefore prove to be a serious matter.

There seems no prospect that the pressure exerted upon scientists and engineers
to determine numeri¢al solutions to mixed problems will decrease in magnitude
Solutions computed using methods that are theoretically unstable will therefore
continue to be used to make practical predictions. The need to use large amounts of
artificial numerical dissipation, unexpected code crashes, unreliable numerical
convergence and occasional unbelievable predictions will all bave to be tolerated if
practical results are to be computed. Practical numerical tests that could inform the
user when predictions were unreliable would be most helpful, but there seems little
hope that numerical methods designed especially to deal with mixed problems are
a realistic (or even a desirable} proposition. For mixed problems the procedure of
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cafryin g out careful and exhaustive grid sensitivity testing assurmes an even greater
significance than usual
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