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De-icing by slot injection
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Summary. We consider the removal of ice from a plate in a cold cross flow by injection of hot fiuid
through a slot in the plate De-icing of this sort is required in 2 number of diverse industrial scenarios,
and is particularly relevant to the aviation industry, where the presence of ice on aircraft wings is a major
safety hazard Thin aerofoil theory is used to determine the flow above the injected fiuid layer, and this 1s
coupled to flow and energy equations in the injected layer and the ice. The key non-dimensional para-
meters and ratios in the problem are identified The resultis a nonlingar singular integro-differential equa-
tion which is coupled to a convection/diffusion equation and a Stefan condition Some special cases are
discussed and some asymptotic limits are identified. The problem is then solved numerically, and results
for a number of different cases are presented

1 Introciuction

In this study we wish to consider the de-icing, by slot injection of warm finid, of iced surfaces
in a cross flow Though the model that we shall discuss is relevant in a number of diverse
industrial scenarios, its most important and easily-understood application is the removal of
ice accumulations from aircraft wings Ice causes the effective shape of an aircraft wing to
alter, increases the drag and decreases the lift (see, for example [1]). The presence of ice on air-
craft wings is potentially extreruely hazardous Refererices [2] and [3] both report aircraft
crashes that were directly attributable to ice that had accumulated on the aircraft’s wings dur-
ing flight.

The methods by which ice accumulation may be tackled fall broadly into two categories'
“anti-icing”, where the aim is to prevent ice accumulation from ever happening, and “de-
icing”, which normally takes place during flight

The commonest method of anti-icing involves spraying the aircraft with de-icing chemicals
prior to take-off. The most common de-icing agents are propylene glycol or ethylene glycol
(12]) Unfortunately, these liquids are not effective for more than about 30 minutes of flight
time, after which re-icing becomes a danger. More advanced chemicals are currently being
developed which may adhere to the aircraft for longer (see, for example [2])

The main methods of de-icing are listed in [3]. These include (i) use of freezing piont
depressants, (ii) surface deformation and (ii1) thermal melting To use freezing point depres-
sants an arrangement is set up whereby the leading edges of the wings contain slots, through
which ethylene glycol is expelled during flight. The glycol de-ices the aft parts of the wing by
flowing over the ice layer Experimental testing of this method [4] showed it to be an effective
method of de-icing The main drawback of this system is that the required glycol must be
stored on board, thus increasing the weight of the aircraft, In practice pilots normally control
the glycol release by observing the aircrafl’s wings to detect ice accumulation ([2]), though
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optical sensors are currently being developed in an attempt to automate the process and opti-
mize glveol consumption. In surface deformation de-icing the general idea is to crack the ice
layer by directly deforming the wing The ice is then carried away by the outer flow One pop-
nlar method uses pnewnatic “boots” which consist of inflatable bladders that are fixed to the
wing and instantaneously inflated when required during flight It is suggested in [5] that this
method is most commonly used oa turbo-propelier driven commercial aircraft because such
engines do not generate sufficient heat to effectively de-ice the external surfaces Another suc-
cessful surface deformation method is electromagnetic impulse de-icing (EIDI) where parts of
the outer surface of the aircraft are deformed by passing an electrical current through a coit
located just underneath the aircraft’s skin. The opposing magnetic fields in the coil and the
shell repel sach other and the surface is deformed for a fraction of a second. Although EIDIis
effective, the repeated rapid deformations invelved may lead to wing fatigue; the electromag-
netic energy produced by the coil may also interfere with the avionics of the aircraft

Thermal melting of ice layers may be achieved by three main methods (a) the use of elec-

“trothermal heaters situated on the aircraft’s wings, (b) the passing of hot air under the skin of

the aircraft, and (¢) slot injection of hot gas on to the wing surface Electrothermal heaters
require electrical energy in order to produce heat and thus increase the power consumption of
the aircraft Since such heaters do not normally cover the entire wing, ice is free to form on
other parts of the wing On modern commercial airliners, electrical heating is used only for
de-icing external probes and sensors and for the flight deck windscreens Reference [3] states
that passing hot air under the skin of the aircraft (normally known as “hot wing” de-icing) is
the most popular de-icing method used on modern jet aircraft; most modern jet engines pro-
duce sufficient heat to successfully de-ice the entire surface of both wings

This study concerns the method of deicing by slot injection. Here, hot air is expeiled
through slots in the leading edge of the wing and gradually removes the layer of ice from
above (and not from below as in (a) and (b) abowve). This eliminates problems associated with
the possibility of large pieces of ice detaching from the wing and travelling downstream Slot
injection de-icing enjoys the additional advantage that because hot air from the engines may

be used, de-icing my be activated for the duration of the flight. The method may thus be used
for both de-icing and anti-icing

2 Mathematical analysis of slot injection de-icing

The groundwork for the development presented below was carried out in [6] and [7], where
isothermal slot imjection into & high Reynolds number cross flow was studied. A further study
i8] considered film-cooling effectiveness for the injection of a cold fluid into a cross flow. All
of these studies however considered only steady flow; the problem discussed below is
unsteady We consider a two dimensional irrotational inviscid incompressible cross flow
whose density is p and whose pressure, temperature and velocity far upstream of a slot of
width L are po,, 0 and U e,, respectively, where e, is a unit vector in the x-direction Imme-
diately downstrezm of the slot (whose upstream edge is assumed to be at the origin) is an ice
layer whose height is denoted by B(x, ) The general arrangement is shown in Fig 1

Deep within the injection siot, we assume that the injected fluid has temperature 8;. Its
pressure must be carefully maintained so that exactly the right amount issues from the siot" if
the slot pressure p; is too high then the hot fluid will spurt vertically upwards and be “lost” in
the outer flow, but if it is too low then insuificient melting will take place We therefore




De-icing by slot injection 75

Outer Flow

Fig. 1. Schematic diagram of the de-icing problem

assume that
1
Ps =P + 5 ﬂUgoﬁz ’ 4 (1)

thereby defining e, the key small paraimeter in the problem Since the disturbance prodaced in
the cross flow is small, classical thin areofoil theory will be applicable. As in [9] and [6], we
assume that the boundary layer on the flat plate is “blown off” by the injection and forms a
shear layer that seperates the injected and outer flows Thin aerofoil theory now dictates that
the injected flow (whose boundary is denoted by S(z,t)) will form a layer of thickness
O(e’L) The horizontal speed of the flow in the injected layer is thus O(eUx), and the mass
flow from the slot is O(e® U I).

We now analyse the flow in the injected fluid downstream of the slot (the “film”
region) We nondimensionalise by setting z = La*, y = &Ly*, § = 2L§*, B= &LB* and
P = e*LU,y" where 1 denotes the stream function of the injected flow and a star is used to
denote nondimensional variables To leading order the governing equation

¢xw =+ 'lj}yy =0
becomes

Yy =0,

and thus, defining the nondimensional mass flow M* by M = pLU e M*, we have (since
2* :Oony*:B*and'[’b* = M*onv* =S*)

M*(y* — BY)
= 2
YT =By (2)
The nondimensional horizonta} velocity u* in the film is thus
* M*
Vs F ®

Bernoulli’s equation may now be applied in the film region to determine the pressure We
nondimensionalize the pressure in the film region by setting p = ,onop’} Making the impor-
tant assumption that the orders of magnitude that apply deep within the the injection slot are
appropriate all the way up to the top of the slot, we now have

Poo
PUZ,

vy = +%e2 0<e <y, (4)
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and, using (3),

. Do 1o M ) .
P 22 < 3
b pU§o+2€( ($" - B’ =) ®)

Now that the pressure is known in the film region, we must ensure that it is continuouns
across y* = S*(z*,¢*) In the cross fiow, the stream function 7, may be written

EZUoo 0O L y
e \Ly = Ugo - ) . I 3 6
o, ) = Uaoy +— /; g(n,t)tan (w_n>dn {6)

where g(z,t) is the (as vet unknown) nondimensional source distribution strength which
represents the perturbation to the flow caused by the injected layer Since y = 5(z,t) must be
a streamline of the flow, we have (D/D¢)(y — S(z,t)) = 0 and thus, on y = 5(z,1),

Sy qu = h (7)

We now nondimensionalize in the ouier flow by setting r=Lg, y=1L§ S :EZLS’

Wy = LUseWroy 1 = Unsh, 0= €Use®, po = pUnBo and t= 7t The boundary condition (7)
asserts that

L - .
(7 v e = ¥

on § = *8(#, ). Standard thin-aerofoil theory applies, and (8) is therefore imposed to leading
order on § =0 Since we wish to identify various parameter regimes and time stales, we do
not as yet, identify the parameter 7, but merely assume that L/Us,7 < 1. (When L/ UsoT
= 0(1), an unsteady, fully coupled formulation of the problem applies; we do not pursue this
further here, however ) In this case, consideration of the behaviour of (6) in the limit as § — O
gives that, to Jeading order, g(x,t) = Sy(z,t) The nondimensional pressure in the outer flow
on i = 0 may now be determined using Bernoulli’s equation. We find that

5, = Peo e][ S(W,ﬂw
CTpUL w g

o ©)

We now match (9) to (4) and (5) This gives

‘ -5 0<z' <1
]- msﬂ*(nl)tl) * 2
™ Jo =1 1 M «
b "> 1
2 9(5* — BY)

Finally, we require boundary conditions for (10) Since the total pressure in the outer flow is
. . . 1
given by Droe = Poo + pUZ /2 and the total pressure in the slot is pe -+ ipUgme2 + O(8), the

flow must separate tangentially from the upstream edge of the slot Thus

§40,t") = §5.{0,#) =0
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3 Energy equation

To close the model, a second equation must be derived that relates S*(z*,¢*) to B*(z*,#*)
This equation must account for the heat transfer that takes place in the film layer and the
change of phase that occurs when the ice melts. We assume that the melting point of the ice is

given by 6y, and that the wall at y = 0 is maintained at a constant temperature ¢,, In the film
layer, the energy equation is

preps(By + (8 VIO ) = k{0, +0,) (11)

where §~ denotes temperatuse, ¢, denotes the film.velocity and py, ¢, 7 and ky are respectively
the density, specific heat at constant pressure and thermal conductivity of the injected fluid.
We now nondimensionalize (11) according to = = La*, y = 2Ly, § = & L5*, B = £LB",
u = lpu®, v = U v, t = 74" and 0 = 0y + 6*~(8; — 6;). This gives

& LUsopfcps L
kf EUDO’T

)6‘;: + w0 + U*G;}_) = .+, (12)

In the ice layer, the energy equation for the ice temperature 6** is similar to (11), but there is
no convection. Using the same nondimensionalisation as for the film region, but denoting
temperature by 8** and using a subscript i to denote the thermal properties of the ice, we have

4712
L PiChi o = 49*+ L gt
i ®o € ol v e ytyw

kT

(13)
Clearly at this juncture there are many different problems that we could consider; however we
shall now fix our attention on a specific parameter regime As we have already explained, we
have assumed that the wall at ¢ = 0 is maintained at a given temperature ,, Although we
shall continue to assume this, the model is hardly changed at all if we alter this boundary con-
dition to correspond to a given (possibly non-constant) wall temperature, a given heat flux, or
Newton cooling Up to now have assumed only that the timescale -+ satisfies I, U € 1; we
shall now be more specific and choose 7 = L/(U¢€?) since, as we shall see, this turns out to be

the most interesting case. Let us now consider (12) We find that, for ¢ < 1, to feading order
we have

I + 0] =6, (14)

where

I = ESLUmprPf
; kf

The first crucial nondimensional parameter I is thus identified Clearly if I'* > 1 the down-
stream heat transfer is convention-dominated, and the details of the melting of the ice are
determined by a boundary layer On the other hand, if I'* <« 1 then diffusion dominates.
Although in this case the temperature may be completely determined and is simply linear in
y*, we do not pursue this further as clearly the melting is negligible except for a small “entry
region” near to z* = 1 and the de-icing process cannot function efficiently When '™ = 0(1)
effective de-icing occurs over a number of siot widths downstream of injection This is the
most interesting case, and the one that will now be analyzed
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We may now reconsider (13) To leading order, we find that

ESLU PiCpi e o
I: =y (15)

The key nondimensional parameter for this equation may therefore be written as el *K; /Ky,
where K; and K are the thermal diffusivities of the ice and the injected fluid, respectively.
According to standard sources (see, for example [10]) the therma)l diffusivities of ice and air
are about 1.5 x 1075m?2/sec and 6 x 10-5m?/sec, respectively; since e < 1 it is therefore clear
that to lowest order (15) becomes

o
vy 0,
and thus

o o Ed 9 S 3 b
9*+ — . y_ w i ) 16
(1 B*) (f% — 0 (16)
The melting of the ice is governed by a standard Stefan condition. To leading order, we
have (in dimensional form)

(k0,5 = —piLgB:, (17)

where the square brackets denote the jump in the enclosed quantity, and Ly is the latent heat
of melting of the ice. In nondimensional form, (17) becomes

& — k-i & * Tk

ony* = B*(z*,1*), where the key nondimensional parameter A" is given by

o _ pilac’ Ll

" kg(6: - 6y)

As far as the physicat interpretation of A* is concerned, we note that we require X* to be O(1)
if the de-icing process is to be nontrivial, for if A* <1 then the ice layer is removed imme-
diately, while if A* 3> 1 the latent heat of the ice is so high that the ice layer can never be
melted (We also assume that the injected fluid is not hot enough to melt the wing; if the ice
layer completety melts so that B* = 0 we therefore replace (18) by B;. = 0]

We now have enough information to close the problem We use (2) in (14) and (16) in (18)
to yield

K[ 1% fk— 2 yE— . s M {y* — B” * % * *
T — 0] = Oy ¥ =@@z§% (B <y <5, 721, (19)
*— 1 k’i g’w_gf _ * TR * __ %
% +B"F (kf) (95—91') =—NPe ony =5 )
S5 1) —% 0<zr <1
1 oo Q% ?’,l*, * 3
—][ Tf; * d'}?: 2 (21)
TSy T 1 M N
I R a— 21
5 25" — B
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with

Os, — 07

FLYL ) =1, 07 B ) =0, 0@, s =2t
i Vf

570,87 = 5. (0,8 = 0,

and B*{z*,0) prescribed as a function of z* We shall henceforth refer to (19)—(21) as the
“De-icing equations”

4 General comments and asymptotic limits

Clearly in general it will be necessary to solve (19)—(21) numerically. Before proceeding to do
this, some general comments are in order We note first that only (20) depends explicitly
upon time The problem is thus quasi-steady, and the free streambine S*(z*,#*) responds
temporally only to changes in the thickness of the ice layer We also note that the whole
problem depends only on the two nondimensional parameters I™ and A\* and the ratios
k(8 — 85) [ kp(0; — 8;) and (B — 8) [ (6; — ;) Under normal aviation circumstances we
expect that 6; > 8y > 8, > 8., (though other cases may occasionally be relevant), and thus
X* >0 The second term on the left-hand side of the Stefan condition (20) thus tends to make
the ice layer become thicker (For the present, we assume that the injected fluid contains suffi-
cient water vapour for ice growth to be possible if the thermal conditions permit ) Near to the
mjection slot, it is the first term of (20) which melts the ice, as 857 > 0 if the injected fluid is
hot enough

4 1 Downstream behavior

Some further simpliﬁcations may be made far downstream of the slot. Here the cold cross
flow has had enough time to influence the once-hot film flow, and the energy equation to
leading order in the film becomes 8 =0 Thus

o= — A{y* - B*)
Ss.c “B# 3

where A = (0, — 67)/(8; ~ 84), and the Stefan condition (20) becomes

A 'l{r ** %
gs-ptE NP

where

e ki (0w —0f

Tk \ 8 -6
The streamline height S* may now be eliminated if desired {rom (21) so that 2 single paztial
integro-differential equation (which must siill be solved numerically) remains.
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4.2 Thin ice layers

Another case in which limited analytic progress may be made occurs when the ice layer is
“thin” so that B* < S§* Ian this case, the dependence of (21) on B* is removed, and we can
make use of the fact that, for £* 3 1, the asymptotic behaviour of S* may be determined.
Standard methods give
S*al 9

3 =3 [ore] *— =
S NSOO_-M+O($ ].Ogl‘),
where 57, denotes the limiting value of §* as =™ -— co It may easily be shown that under
these circumstances 3" ~ 1 /S* on y* = B*, and thus to leading order (20) becomes

—X'BLB ~ &
Far downstream; we therefore expect that
B ~ Y4 O]_ - 2.‘\’,15*/)\* 3

where O] is a constant. Since under normal circumstances & < 0, this gives the expected result
that the ice layer grows like v/¢* far downstream of the slot and for large times

A number of other asymptotic limits (based, for exampte, on large or small temperature
ratios and/or thermal conductivity ratios) admit simplifications and may be considered: in
most cases however the details are fairly straightforward; we do not pursue these limits
further

5 Numerical solution of the de-icing equations

In general, (19)—(21) must be solved numerically This may be done using a simple iterative
method We start by solving the singular integro-differential equation (21) for S*, assuming
that an initial B* is known. This also determines M* We then use these values of M*, 5" and
B in (19) and solve this convection/diffusion equation to yield 8~ and thus &7 (z*, B, t*) A
simple explicit scheme may now be used to update B* from (20), after which the whole process
may be repeated We deal with each of these substeps in turn

5 1 Singular integro-differential equation

The method that we use to solve the singular integro-differential equation (21) is similar to
that employed in [6], save for the fact that the ice layer must be accounted for The first step is
to invert (21) and apply the boundary condition 57.(0,t*) = 0 to obtain
\/&:Z o0 M:‘sﬁ d,),ise

20 Ji (St t) = Brlr, )T O — 2)

At this stage it is convenient to remove M* from (22) by setting

St (a*, 1) =

(22)

S = M3 Br= M
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The equation may now be integrated with respect to z* Applying the boundary condition
T+(0,t*) = 0 now yields

fen = 21”fflm{T(n,t)—10(n,t)]2{ \[+1 Vi \/—

where here and henceforth the asterisks have been omitted for simplicity The form of (23) is
particularly convenient from a numerical point of view as the integral is no loager a Cauchy
principal value and no numerical differentiation of the unknown functiens is required.

For a given time, £,, say, we now divide the range of integration [1,cc) into two regions:
[0, mn] (with mp == 1) and [y, c0). The general idea is to use direct numerical discretization :
over the former interval and asymptotic estimates over the latter We divide [ng,ny] into N
equally-spaced intervals and assume that at each instant in time T — C may be approximated
on each sub-interval [y, mest), (=0, ,N — 1) by using a piecewise linear average to give

}d (23)

T (s, )~N§ 1( ! ! )
P S 2 9\ e ) — Cl )P (erns )~ Olnns o)

[ i

fori=0, ,N and where the “error” term Enyq 1s given by

b= [ e e 2 e @)

The integral in (24) may now be evalnated, and by assuming that ny is large encugh to permit
the approximation of (25) we employ relaxation as in [6] to yield the numerical scheme

} dn+ Exnn (24)

Tyl tm) = ZA«J; 5 tm) — G b )12 + (1501, ) — Cian, )]

5 Q(‘/_) T3, ) — Gy )] (26)

TJ+1 (.'E:L, tm) (3317 m) + ¢ r_;-.—l 1'1_7 m ~T; (CC-,,, )]

fori=0, ,N,where the relaxation parameter ¢ is chosen to be less than unity {in practice,
choosing ¢ ~ 0 1 — 0 5 usually gives good results) Here Q(c«) is given by

Q) ot (17 o)log a+1’ (27)
and A is defined by

VTl + /T4 :
Asp =2/; —/ + (1 — z) log (X2 T VR
k ﬁ(\/ﬂ_k Mer1) + (e — z:) log NN |
T+ /T 5

-y — z5) log |————= 28

(s =z og | LT 28)
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Experience shows that the value T(np, tm) is always the slowest to converge the scheme is
therefore iterated until

IT.I’:‘-'{"I ('I](], tm) - TJ(T}O; tm)i S 6

for some prespecified tolerance § Once convergence has taken place, values of T for
0 < z < 1may be calculated simply by using the relevant z in (24)

3 2 Convection-diffusion equation

To determine the temperature in the film layer, we must solve

: e - - Sz - — — \

onz > 1,B(z,t) <y< Sz, ) with - =latz =1, §~ =Q0aty=Bandf§ =Aaty=2S5

In general (29) must be solved numerically, a task that may be accomplished by using a
standard finite-difference method. For this particular version of de-incing however, the
problem may be solved in closed form by employing a von Mises iransformation. We change
from independent variables {x,y) on (X,) where X = o and 1 is the stream function of
the flow This not only transforms the partial differential equation (29) to a linear heat
diffusion equation, but also, since the upper and lower boundaries of the flow are sireamlings,
leads to a problem that is specified on a rectangular region For a given time, the transformed
boundary value problem is

- M ~
i =(s_(m>9w (@21, 0P < M)

with
(1L, =1, 6 (z,0)=0, & (zM)=A

This may readily be solved by elementary methods to give

where

* M
flot) = f FS@ - BE)

and therefore the required teraperature gradient (written, for pumerical purposes, in terms of
T ang C) is given by

_ M—2,’3
=5 = TT(z) = C&)

L N _ —1\"] ex - 7127*'2 ’ dg
x {Avwl 2L+ (A - 1)(=1)"] P( rMﬁ/?’l T(&)—C’(@)]' 0

By
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For # > 0 the fact that M and I' are both order one and T > C ensures that the series in (30)
converges quickly For z = 0 it diverges, as might be anticipated from the boundary condi-
tions of the original boundary value problem The physical interpretation of this is clear- if we
begin the de-icing process with (for example) a layer of ice of constant thickness, then instan-
taneously the ice at z = 0 melts as the temperature is forced to jump here, and the temperature
gradient is therefore infinite.

Nusmerically, we simply use (30) in the Stefan condition (20) and (since T and C are known
only at given mesh points) calculate the necessary integrals using a simple numerical quadra-
ture law (Simpson’s rule was used in the results presented below) The series in (30) is then
summed until the required accuracy is attained

5.3 Stefan condition

Finally, we must update B (or, for numerical purposes, C) using £20) Some numerical experi-
ments showed that a simple Buler method was quite sufficient to provide the required numeri-
cal accuracy, provided that a small enough time step d was used We write (20} as

b ly:B i

Co= =2~ O

and discretize this using

o 071, K
mt+l _ rm y ly=B .
C; Ci™ —dt [AMQ 7 G (31)
where, for for i =0, , N we denote C{a;, by) by G and T'(x;, t) by T3™ . "This cornpletes
the numetical scheme for solving the problem, which now consists simply of (26) and (31)

6 Numerical results

The numerical scheme described above was coded in FORTRAN running a P200 micro under
Linux. Before dealing with specific cases, a number of numerical experiments were carried out
to check the accuracy and convergence of the numerical scheme These all confirmed that pro-
vided enough mesh points and a small enough time step were used the scheme performed
satisfactorily In each of the cases discussed below, we also performed computations for a
number of different time step sizes and mesh point arrangements so that we could be sure that
convergence had occurred

We present a variety of numerical results In Fig 2 we consider the de-icing of a layer of
ice which has an initiai nondimensional thickness of 1/2 For this case we used the values
§; =100, 0o = 6y = —10,0; =0, A=1,T=20and k =—01. 100 mesh points were used,
and we took niy = 5, ¢ = 0.3 and dt = 0.0001

Successive positions of T (solid line) and C (broken line) are shown for £ =00(0.1)0.5
The behaviour is much as might be expected The ice layer reduces in thickness near to the
rear of the injection slot, but is never completely removed since the wall temperature is iess
than the freezing temperature. Further downstream, the influence of the cold wing and the
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05

0.5

Fig: 2. De-icing for an ice layer of initial thickness { 3 with an injection temperature of 100 Nondimen-
sional free streamline height T (solid line) and nondimensional ice-layer thickness C (broken line) plotted
against nondimensional downstream distance x

a 1 2 3 4 5

Fig. 3. De-icing for an ice layer of initial thickness 0 5 with an injection temperature of 100 and almost
isothermal ice Nondimensional free streamline height T (solid line) and nondimensional ice layer thick-
ness C (broken line) plotted against nondimensional downstream distance x

cold cross flow is feit as the temperature gradient on the ice boundary changes sign and the
ice layer begins to grow

In Fig 3, the parameters are identical to those in Fig 2, save for the fact that the wall tem-
perature is now chosen to be 8, = —1 The ice layer is therfore almost isothermal, and if is
possible for almost complete melting of the ice layer to take place Results are shown for
=0 0(01)1 3; the ice is all but completely removed up to about z =3.5 Thereafter the
thickness of the ice layer increases as before One way of interpreting Fig. 3 is that it begins to
show the approach to the only “steady state”™ that exists for this formulation of the problem,
wherein the ice is completely removed up to the point where the surface temperature gradient

of the film changed sign. Downstream of this point in this steady state the ice layer is infinitely
thick. '
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Fig. 4. De-icing for an ice layer of initial thickness 0 5 with no ice growth and an injection temperature of
200 Nondimensiona! free streamline height 7" (solid line) and nondimensional ice layer thickness C (bro-
ken line) ploited against nondimensional downstream distance x

In the form described above, whenever the cross flow has atemperature below the melting
temperature of the ice the model inevitably predicts ice layers that grow as z increases. An
additional mechanism of ice formation is also present when the wing temperature 1s lower
than the melting temperature of the ice In reality, of course, the amount of ice that STOWS
depends crucially upon how much water vapour is present in the injected gas One interesting
(and possibly more realistic) version of the problem therefore occurs when we assume that no
freezable material is present in the cross flow or the film flow (and consequently any ice that
melts to become water is “instantly remmoved™).

Figure 4 shows results in a case where no ice growth is permitted Again the layer of ice
had an initial nondimensional thickmess of 1/2, and we used the values 8; = 200,
Bo =0y =-10,0;,=0,A=1,'=20 and k=005 100 mesh points were used, and we
took ny =5, ¢ =0 3 and df = 0 0001 Results are shown for £ =00{0 1)1 5 Clearly now a
nontrivial steady-state solution is attained. The results should also be compared with those in
Fig 2 The wall temperatures in the two cases are identical, but in Fig 4 a higher injection
temperature is used The resulting enhanced de-icing effect is evident

7 Conclusions

We have shown above that it is possible to make detailed predictions of the performance of a
slot-injection system for de-icing by using a standard heat transfer and phase changé model
coupled with incompressible acrodynamics theory One of the potentially valuable results of
the theoretical work is the identification of the key nondimensional parameters A* and T* and
the temperature ratios that control the process
 As suggested above, there are a great deal of amendments and extensions that could be
made to the model These include:
(i} Consideration of a case where the heat transfer to the wing is governed by a Newion
cooling type condition In this instance an exact solution of the convection-diffusion equation
in Sect 52 Is no longer available, and it would be necessary to proceed numerically Once a
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von Mises transformation has been used, however, this is a simple matter and need not slow
down the numerical scheme excessively

(if) Consideration of a case where water liberated by the melting of the ice upstream may
be redeposited on the ice layer downstream, with consequent refreezing The inclusion of this
extra mechanism would require a little extra modelling, but this could easily be incorporated
into the numerical scheme

(iii) Using a time-varying pressure in the slot to expel the hot air (This might be useful if
it was required to devise a system which could both de-ice and anti-ice without using excess
heat by adjusting the mass flow out of the slot)

It is essential that the development of efficient methods for de-icing aircraft and other
structures continues As to the importance of preventing ice from forming on aircraft wings, it
is perhaps apposite to conclide with a quotation from R. Kapustin, a former NTSB (National
Transportation Safety Bureau} investigator [5]. He remarks:

“Frankly, I don’t know how much more often you can tell people that you have to have a
clean aeroplane. You can’t haveice onit. I think we need crew members to be aware of the
fact that if you load an aeroplane up with ice, you're probably going to die.”
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