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Summary. A model is developed that allows the prediction of the film cooling effectiveness produced by siot
injection into a uniform cross flow The model relies on the fact that when the slot pressure exceeds the cross
flow pressure by 2 small amount only so that injection is weak, the resulting small parameter may be
exploited to solve the flow problem. The energy equation for the flow may then be solved to determine how
much protection cold gas injection gives to the wall downstream of a slot. Although the leading order energy
equation must be solved numerically, a simple asymptotic expression may also be derived to allow
predictions of heat transfer at large distances from the injection slot.

1 Introduction

In modern jet engines turbine entry temperatures are routinely higher than the meiting
temperature of the material of which the turbine blades are composed. It is thus essential that the
blade surfaces are protected. The commonest way of providing such protection is to employ
various forms of “film cooling” wherein a film of cooling air is injected into the flow through small
slots or holes in the surface of the turbine blades Practial details of the general problem were
considered in [1] with specific reference to jet engines; injection problems similar to this also
oceur in many other industrial processes such as film de-icing and chemical mixing

When film cooling is employed, downstream blade protection is increased as the mass {low of
injected air increases from zero, though evidently for sufficiently high injection rates the cooling
jets will not remain ciose to the wall that they are designed to protect. Much interest is therefore
centered around the low injection rate problem where the pressure in the slot or hole exceeds that
of the Iree stream by only a small amount.

In the current study we wish to employ asymptotic techniques to assess the ability of
two-dimensional slot film cooling to provide thermal protection for a blade surface downstream
of a film cooling slot. Below we show that it is possible to do this by extending previous models to
incorporate the effects of varying temperature

The basis for a simple model of low injection rate slot film cooling that agreed weli with
experimental results was established by Fitt et al [2], and the reader is referred to that paper for
details of other work in this area. For a review of earlier experimental and semi-empirical work in
the subject, see [3]. The analogous problem for the case of suction (when the injection and free
stream total pressures are equal) has been studied by Dewynne et al [4] using hodograph
methods When the total pressures are unequal however (as in the case that we wish to consider)
such methods are no longer appiicable.
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2 Mathematical modelling

In order to derive equations that allow film cooling effectiveness predictions to be made, we
consider the geometry shown schematically in Fig. 1 The injection is driven by a small
overpressure, so that deep within the slot (of width L) we assume that

1
Ps = Do + 5 00U%E
where ¢ < 1 defines the small parameter in the problem and p., ¢, and U, are respectively the
pressure, density and speed of the undisturbed cross fiow
Assuming that injection takes place into an incompressible irrotational free stream. the
equations of motion are

Py, =0 (y> S0 (1)

PrRr=0  (y<S(x) 2

(% +q V) (y—Sx)=0 (y=S) (3)

Y.=0 (y=0,x>1) @)

ubl, + of, = (0x + 0y) (3
@wlp

and are subject to the additional requirement that the pressure is continuous across y = S(x)
In the above equations, ¥, and 1 denote the stream functions for the main stream and injected
flows respectively, the velocity ¢ is given by ¢ = ue, + ve, where e, and e, denote unit vectors in
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Fig. 1. Schematic diagram of slot film cooling injection
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the x and y directions respectively. k, ¢, and ¢, are respectively the constant thermal
conductivity, density and specific heat at constant pressure of the injected gas (assumed for
simplicity to be the same as the free stream gas; if the values were different then a few obvicus
changes could be made to the model). Finally, it is assumed that the main stream and injected
flows are separated by the (unknown) streamiine y = S(x), whiist the variable # denotes
temperature.

2 1 The flow problem

Since the heat transfer problem decouples from the flow problem, we solve the flow problem first
and then consider the heat transfer A full discussion of the sotution te the flow problem (using
a slightty different method) is given in [2}, but for completeness we briefly summarise the more
important details. We consider only the case of steady flow (the unsteady problem may also be
analysed but the details are much more complicated). Using standard thin aerofoil theory
assumptions (see, for example [5]) and assuming that the injected flow layer may be represented
by a distribution of sources of strength g(t) (to be determined), we note that if the pressure I5to be
continuous across y = S{x), then the order of magnitude of the perturbations to the pressure in
the injected layer dictates that the stream function for the free stream flow must have the form

<

i, = Uy + & Yo J (1) tan‘l(——z——) dt + o(&?) (6)
T x—1

Q

if (1) is to be satisfied. The dividing streamline y = S(x) must therefore be of height O(Le?). Using
the steady version of (3) applied on y = 0, we find that g{t} = $; where non dimensional variables
have been defined by x =L% and S(x) = Le*S(%). Using Bernoulli’s equation, the (non
dimensional) pressure j in the outer flow on y = 0 may now be calcuiated, giving

the bar on the integral denoting the Cauchy Principal Value.

In the injected layer downstream of the slot we non-dimensionalise by setting v = Lx*,
y = Le?y*, S = Le®S*, ¢ = LU &%y*, p = 0,U%p* It is apparent that, to produce pressure
perturbations of the correct order of magnitude, the horizontal velocity in the downstream film
region must be O(sU ,,) (and consequently a vortex sheet separates the main stream and injected
flows). The injectant mass flow is thus of order LU &3, and accordingly we non-dimensionalise
by setting M = e*LU ,M*

Solving (2) to leading order and using (4) we find that (assuming that y* = O on p* =0 and
Wt = M* on y* = S*x*))

M*y*

*
¥ o

Bernoulli’s equation may now be used to relate the pressure in the injected layer to the slot
pressure, giving
Po 82 M*ZEZ

. & ‘ 8
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It remains only to consider the region directly above the siot. In the siot, since the mass flow is
O(3LU ), the vertical velocity must be of order U, It is assumed that these orders of
magnitude apply right up to the top of the slot; naturally there will be smail regions near to the
slot leading and trailing edges where this will not apply. In the slot the (non-dimensional)
pressure is thus given by

® P .é'_z. Ofe® 9
p omUi+2+ (e°). 9)

F4

To close the model continuity of pressure across v = S(x) is invoked. The pressures given by
(7}, {8) and (9) must therefore be equal Dropping all of the bars and stars for simplicity, we find
that S(x} is determined by the nonlinear singular integro differential equation

1
=% —— OD<x<i)
1 2 10)
i 1 M? ) (
_5+?_S?‘ 1<x<«< oz)

which must be solved subject to the conditions 5(0) = 0 {since separation is from the upstream
edge of the slot) and $(0) = 0 (since separation must be tangential to the wall upstream of the siot
as the total pressure of the main stream flow exceeds that of the injected flow) The mass flow
M may be removed from the problem by setting S(x) = M**T(x) and inverting, subject to the
condition T'(0) = G, to give

V_
T'(x) = _ (11)
T3 ]/ &—x)

The asymptotic properties of (11) may easily be estabiished; we find that

Tx) ~x3 (x—=0)

{x = o0)

T{x) ~ T(o0) =

The equation may easily be cast into a form suitable for numerical solution. By integrating once
again and using the boundary conditions, we obtain

-2 o] e8]

1

Since (13) contains no singular integrals or derivatives, it may conveniently be solved using direct
iteration. Full details of the scheme employed are given in [2], but it transpires that, provided
some under-relaxation is used, it is possible to use an exponential grid in order to extend the mesh
to suitably large values of x, giving the mass flow as

= T3(e0) ~ 1,106
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Fig. 2. Streamline S(x) dividing mainstream and injected flow

Figure 2 shows the function Tx). Perhaps the most notable feature of flow is the ‘lid” effect
wherein the greater total pressure head of the outer flow and consequent tangential separation
from x = 0 acts to effectively cover most of the siot, the injected flow only escaping from the rear
of the slot in any quantity

2.2 The thermal problem

Having solved the flow problem and determined T(x), we now turn to our main concern, namely
the heat transfer characteristics of the flow The gas within the slot is assumed to have
temperature 8, and the Eq. (5} applies in the injectant region downstream of the siot, whilst in the
mainstream flow we assume that 8 = 8, Non-dimensionalising by setting § = 8, + %0, — 8s)
and using the scalings given above for the injectant region downstream of the slot, we find that

WEOE — UROE = W', + 0%, (i4)
where the size of

_ k
Looc,U 8°

determines which terms are dominant in (14).

It is necessary to specify initial and boundary conditions for (14) Most previous
studies have characterised the efficiency of the film cooling by using the ‘film cooling
effectiveness’ x defined by

0, — Oy
7?—' 900_90
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where 8,,, Is the “adiabatic wall temperature” (the wall temperature in the presence of a perfectly
insulated wall} In terms of the non-dimensional variables this gives # =1~ 0*(x, (). One
obvious advantage of this definition is that it gives “worst case™ estimates. Although in most
realistic circumstances the biade surface y* = 0 is uniikely to be perfectly insulated {owing to
internal biade cooling etc ), we assume that 85(x*, 0) = ¢ It should be noted that a more general
boundary condition invoiving a heat transfer coefficient could easily be incorporated into the
model On p* = $*(x*) we have 0* = 1. and we choose to additionally make the simplification
that * = Oat x* = 1 This amounts to assuming that the hot gas of the main stream has no effect
on the injected gas until it reaches the downstream ecge of the slot and is justified by the existence
of the "1id” effect referred to earlier
As far as the size of 4 is concerned. there are three cases to consider

(a) When/ < 1convection dominates the heat transfer, the film cocling effect is pronounced and
the downstream surface is well insulated from the hot free stream A boundary layer of width
]/; determines the details of the heat transfer close to the surface In practical circumstances / is
often substantially less than one, but not asympiotically small Even if it is, it must be
remembered that the vortex sheet separating the injected and main stream flows is unstable and
1s likely to break up far downstream of the siot

(b) When 7 » 1 diffusion dominates and heat transfer takes place rapidly To lowest order (14)
gives

0% = p*A(x*) + B(x*)

and the boundary conditions on v* = 0 and * = S*(x*) give simply * = 1 The condition at
v* = 1 is satisfied via a boundary layer in x*, but the details are immaterial, for in this case the
film cooling effect is negligible and henceforth we ignore this parameter regime.

{¢) When 7 = 0(1) appreciable film cocling occurs over a number of slot widths downstream of
injection. This is the most interesting case, and the one that will be anatysed

For the case 7 ~ 1, we use a simple numerical scheme to solve (14) Dropping the stars and
setting § = TM 2, we find that the problem to be solved for x = 1,0 £ y £ M*PT(x) is

1 vT

?9_\- + F 9,. = OCQ:.,_‘. (15)
with
84v, 00=0, 6L, v=0, 6x M Tx})=1 (16)

where ¢ = i/M '3 Using a rectangular grid with vertical spacing p and horizontal spacing h, we
denote the value of the numerical approximation to 8 at (ih, jp) by 0; ; The simplest discretisations
{o use are

- Orjer —20:;+ 0,51
h ’ N P’

and a centrai difference for 0, given by

B je1—8ij-1

8, ~
¥ 2p
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Denoting T{x;) by T;, we use a forward difference for the derivative of T{since this function is
already known). This gives the simple expiicit finite difference scheme

haTivy  yi(Tie ~ T 2hoT;

l9.‘+1,j‘—‘9i.j+1( p2 — = 2Tirs 0| - 3+1
17
(h'xﬂﬂ }’j(Ti+1 - T;)) (7
F Oyt ——+
P 2pTi4y
The condition at y = 0 is dealt with using the usual fictitious points to yield
2haT; 2haT;

Uiv10= 011 —9;;52 + B0 (1 —%52) (18)

Some standard analysis shows that lingar stability is gnarantesd as long as

is taken to be fractionally less than 1/2

The numerical method presented above must be used in conjunction with known numerical
results for T(x). Tests showed that provided enough mesh points were used for the preliminary
calculation of T(x), linear interpolation provided a satisfactory way of determining the values
T; when required. The method given by Egs. (17) and (18) is extremely simple, but numerical
comparisons with a range of other standard methods (Crank-Nichoison, method of lines etc)
showed it to be satisfactorily accurate provided enough points were used.

As well as numerical results, asymptotic expressions may be determined to approximate the
film cooling effectiveness for large values of x Using (12) in (15), we find that to leading order the
second term in Eq, (15) is O(1/x*) for large x. Correct to O(1/x), therefore, the probiem that must
be solved is

4
6= (Tw _ I-“:) 6, (19)

X

(where T, = T{w0)) with 8, =0 on y=0and 8 =1 on y=M**T, — T%/nx). An initial
condition must also be satisfied, and this will occur ir the form of an (as yet unknown) matching
condition. Although this is not a simple problem to solve, some simple asymptotic estimates may
be delermined by relaxing the condition on y = S(x) slightly and instead imposing only that
§=1ony=M¥T, Although this is a simplification, it is consistent with the thin aerofoil
theory assumptions that have aiready been employed. The solution to (19) is then given by

7T,

452

§=1—Kexp ( ["(l —x)+ T3 log x]) cos (ﬂ—> {20)

280

To determine the constant K in (20), a boundary layer problem must be solved for small x to
determine a matching condition. Rather than involve ourselves in the complications that this
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entails, however, a simple formal conservation argument may be employed to assert that since
at x =1 the integral of & between 0 and S ,must be S.,/2 (a fact easily confirmed if both sides of
Eq. (10} are multiplied by §'(x) and integrated over [0, o)), the downstream asymptotic
temperature given by Eq (20) must satisfy the same condition, thus giving K = 7/4 The
expression (20) then allows useful asymptotic estimate of the film cooling effectiveness to be
made

3 Results and conclusions

All of the results presented below used the following parameters- The flow problem was solved
using a 200 point exponential grid with x, = 1 and

1_1,11—1
=1+ vdeg | —
I—v

where the initial grid spacing dx, and grid scale factor v were taken to be 0.005 and 1.026
respectively, giving a final mesh point of 33422 For values of x exceeding this, the asymptotic
estimate (12} was used

For the heat transfer calculations the region 0 £ y < S(x) was discretised using 100
equally spaced mesh points Values of i were chosen to maintain a stability factor of g = 0.4
A number ol numerical tests showed that the results were insensitive to further increases in grid
size

Figure 3 shows film cooling effectiveness as a function of x for a slot width of 1 and various
values of . We note that for values of « close to unity the film cooling effect is minimal. As
x decreases from 1, a greater portion of the downstream surface is protected. The exponential
nature of the effect suggested by Eq (20)is confirmed. From a practical point of view, the fact that

film cooling el fectivenn:y

Fig. 3. Film cooling effectiveness as a function of downstream distance for various values of o
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Fig. 4. Critical film cooling effectiveness values

the efficiency of the film cooling is determined solely by the single parameter « is the most
important result. Since the injection velocity is given by U; =M U2, the “blowing rate”
B = U, U, is given by B = ¢M Defining the Prandtl number in the usual way and basing the
Reynolds number Re on the slot width and U, we find that ¢ may also be written

M4f 3

= — 2
%= PrRe B (1)

A doubling say of the blowing rate thus decreases « by a factor of about 0.315, indicating that the
efficiency of the film cooling may be altered significantly by fairly modest changes in the blowing
rate

In many practical applications, design specifications dictate that the film cooling effectiveness
must not fall below a certain value at a particular downstream station. Figure 4 shows the
positions at which the film cooling effectiveness takes a given value as a function of . By using
Fq. (21) the blowing rate required to satisfy specific design criteria could be determined.

Figure 5 shows comparisons between the asymptotic solution given by Eq. (20) and
numerical solutions calculated using Eqgs. (17) and (18} Results for the values « =01 and
@ = 0.05 are shown, the numerical results being denoted by bold lines and the asymptotic
estimates by broken lines. For the case « = 0.1 the asymptotic estimate provides very acceptable
predictions of film cooling effectiveness as long as x exceeds approximately 7 For the smalier
valae of o the errors (as one might expect) are slightly larger.

We conclude from the results presented above that the model proposed in [2] for slot njection
flow may be extended to allow the prediction of film cooling effectiveness. For reasons of brevity
only simple geometrics have been considered; for angled slots and slots possessing steps, ramps
and other complications the flow may also be determined (see {6]) In thesc cases, the
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Fig. 3. Comparisons between asymptotic estimates and numerical caleulations of film cooling effectiveness
n {Numerical solution- solid lincs}

corresponding thermal problem could be solved by making some obvicus changes to the model
presented above. It is also possible to consider weakly compressible [lows and flows where the
densities of the main stream and the injected flows are constant but unequal.
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