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AN INTEGRAL EQUATION FOR THE VALUE OF A STOP-LOSS OP-
TION

A.D. Fitt, P. Wilmott! & J.N. Dewynne

Faculty of Mathematical Studies { Mathematical Institute
University of Southampton 24-29 St. Giles
Southampton S09 5NH, UK Ozford OX1 3LB, UK

ABSTRACT. The value of an investment may be protected by a ‘stop-loss’ option,
where the underlying is sold if ever its price drops to a given fraction of its previ-
ously realized maximum price. Expressions for the fair value of a stop-loss option are
derived for both the cases of continuous and discrete observations of the maximum
price. In the continuous case, a simple exact solution is available, and when the ob-
servations are discrete the problem reduces to an integral equation. In some limiting
cases this equation may be solved analytically, but in general a numerical solution is
required and some indications are given of how this may be accomplished.

1. Definition of the Option

Options and other related derivative products may be used in a number of different
ways, some of which may be for ‘insurance’ purposes {as in portfolio hedging) whilst
others may be purely speculative. We describe a stop-loss option that mimics the
following loss minimization strategy. Consider a situation where an underlying asset
is held and we wish to insure our position should a sudden downturn in the market
occur. Suppose that at time ¢ the particular underlying has price 5() and we define
J(t) = max 5(r) for 7 < t, then one way of guarding against such a devaluation is to
instruct a broker to sell the underlying if ever the price drops to such an extent that
S < AJ, where X < 1 is given. For obvious reasons, we refer to this as a ‘stop-loss’
strategy. A stop-loss option is an option that has the same financial payoff as this
strategy, though lacking the dividend or coupon payments of the underlying. The
option has no expiry date and is only exercised if § falls to the value AJ. Invoking
the language of exotic options, we see that the stop-loss option may be thought of
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as a perpetual American barrier lookback option. Our aim is to determine the fair
value for such a contract.

2. The Stop-loss aption with continuous sampling

Firstly we examine the case where it is assumed that the maximum underlying price
J(t) is monitored continuously, and, if necessary, changed with every ‘tick’ of the
stock market. Assuming that the volatility, interest rate and (constant) dividend
yield are given by o, r and D respectively, the equation governing the value V (S, J,t)
of the option may be derived using the standard Black-Scholes argument. Recall that
for simple (i.e. non path-dependent) options the value is given by the solution of the
Black-Scholes equation (see {2] and {5])

0252
W+—2—V35+(T—-D)SV5—TV =0. (1)

In the present case this is still the governing equation, and J only occars through
the boundary conditions. Also, in contrast to other ‘exotic’ options, the equation
includes no @V/8J term. (See [3].) When the maximum is sampled continuously,
and in view of the perpetual nature of the option, it is reasonable to assume that
the option value has reached a steady state. In practical terms, this assumption is
valid provided the option has been held for a long time. We must therefore solve (1)
without the V; term. To derive suitable boundary conditions for the equation, we
note that V{AJ,J) = AJ since if ever § = AJ then the underlying will be sold and
will have the value AJ. Additionally, V' is zero on § = J. This reflects the fact that
on § = J, V cannot depend on J, since if § ever reaches a previous J during its
random walk, then, with probability 1, J will be exceeded at some later time. The
equation to be solved is thus

o252
5 Vsg+{(r—D}SVs—rV =0 (M <S<J) (2)
with
Vix,J)=AJ and V;=0 on §=J. (3)

This problem is of similarity type; seeking a solution of the form V = JW(7) where
1= 8§/J we find that

20,2
1’-2’7—W" +(r— D)W —+W =0

and

W(1)=W'(1), W(\) =
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Hence there is a simple explicit solution given by

— A[(k2 _ l)ﬂkl + (1 — kl)ﬂkz] (4)
- (kz - 1))\]‘1 + (1 - kl))\kz

where k; and k3 are defined by

w

_D+o¥2-rE/(r—D—0%2)*+2rc?
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k13

*
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taking the positive and negative signs respectively. In the particular case when there
are no dividends, we find that W = 7 and therefore V = S, so that the option
value and underlying price are identical. For non-zero dividends however, (assuming
that D < r) the value of the option is always less than the underlying, since the
underlying yields a dividend but the option does not. Figure {1) shows W as a
function of 7 for typical values of the parameters, namely ¢ = 0.3, r = 0.08, A = 0.5
and D = 0,0.05,(0.01),
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Figure (1) : Option values for various dividends

3. Discrete Sampling of the Maximum

In practice it is likely to prove inconvenient to monitor the price of the underlying
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in a continuous fashion, and it is more realistic to consider the case where only
discrete measurements of the maximum price J(t) are made. Assuming that the
measurements are made at times ¢; (¢ = 0,1,...), a Black-Scholes type analysis shows
that the equation that must be solved is (1), but we no longer have § < J. The price
of the underlying, 5, can exceed the most recently measured maximum since this
maximuim is only updated in a discrete fashion. The first of the boundary conditions
given by (3) still applies, but for discrete sampling the second must be dropped. This
second boundary condition is replaced by a limit on the growth of ¥V as § — o0: we
must have Vsg — 0 as § — oo, Although this is a similar problem to the case of
continuous sampling, the option value is now intrinsically time-dependent because of
the discrete sampling. Since the value of J may jump at the sampling dates ¢; we
may expect the option price to jump there also. In fact, the option price for fixed
S and J will jump across each sampling date but the reelized value of the option
will not be discontinwous. This is apparent from arbitrage considerations. Since the
realized option value must be continnous when J is discontinnous we arrive at the
Jjump condition
V(8,J,t7) = V(§,max(S, J),t}),

where ¢ and t} represent times immediately before and after the sampling respec-
tively.

To simplify the problem it is now convenient to change from independent variables
(8,1) to dimensionless variables (y, 7) where

§=2Je¥, t=-27/0%
We then define a new dependent variable (}(y,7) by
V(S,1) = Jre*+B¥Q(y, 1)

where o and 8 are to be chosen. With this change of variables, it is found that the
choices
0’2,62
2
are particularly corivenient, since £ then satisfies the diffusion equation

D—7r
o2

1
a=r + ) ﬁ b § +
Qr =0y,
The relevant boundary condition is now
Q =exp(2a7/0?) on y=10
whilst the transformed jump condition is

Qy, 7)) = [max(Ae?, 1)) 2Q(y — log[max(Ae¥, 1)], 7). (5)
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This, along with the assumption of perpetuity and a sunitable finiteness condition
as y — 0o, gives a well-posed problem. To solve this problem, (we assume without
loss of generality that 7; > 0 for all #) it is convenient to set Q(y,77) = ®(y), and
derive an integral equation for $(y). First the diffusion equation must be solved for
Q. The solution having the correct growth for large y and satisfying @ = exp(2ar/0?)
on y = 0 and Q(y,0) = B(y) is given by

= 2\/1.75 OOO {exp (—@) —eXp (—%)} D(s)ds+

_ 2n 2
%exp (2:—;) [e ¢ ;Terfc( \/ 207 > +e \/‘;erfc (—-—— + 20[1’)}

The jump and periodicity conditions must now be applied. To do this, we note
that because of the form of (5), there will be no jump for values of y satisfying
0 < y < —logA. The financial interpretation of this statement is that there is no
jump in the option value unless a new maximum is sampled. We therefore have

Al-Ber1-A)Q(~log A, 7F) (y 2 —log A)

Ny, 77 )= { v, Ti+) (0<y < —logd)

Although any distribution of the observation times ; can be handled using the theory
given above, for illustrative purposes let us assume that observations of the maximum
are performed periodically with period T; in practice T will typically b2 a day or a
week—sampling at the close of trading daily or weekly. Consequently ®(y) satisfies

B(y) = B(—log A)elytesN01=F)

for y > —log A and, using the periodicity condition V(5,0) = V(§,T)

B(y) = 2\/_ (%Lme ‘”—“T’—) (s)ds+

Wy | 1 [0 | v [2eT
(e erfc |:2\/T > ]+e erfc 2\/T+ =

for 0 £ y € —logA. This is a linear Fredholm integral equation of the second kind
over a finite range, and may be further simplified by setting

B(y) = e + ¢(y)

B E =

where k% = 2a/0?, giving
e—k"’T

(ﬁ(y):?\/ﬁ A

” (e‘uf—n{f’ - e‘%t%ﬁ) ¢8)ds  (0<y< —logd) (8)
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so that ¢(0) = 0 and therefore ®(0) = 1.

Before considering the solution of the integral equation (6) for arbitrary T, we may
consider some special cases: for small values of T', standard applications of Laplace’s
method and Watson’s lemma (see, for example [4]) show that, as T — 0,

| e (— & ;Ts)z) $(s)ds ~ $(y)2VAT + ¢ (y)2V7T5 + ¢ (y)VaT® +0(1%)

= (y+9)° —ppr | 2T | 4T, 3
jo exp ( 225 ) ds)ds ~ e SO+
Contributions from the second term in the kernel are thus exponentially small and,
writing &(y) = do(y) + Té1(y) we see that as T — 0 the function ¢o(y) must satisfy

0 — k¢ =0
whilst the correction term satisfies
1 .
8 ~ K1 = 506" +K76§ — o).

From (6) we see that one boundary condition for this equation is given by ¢{0) =0,
so that, restricting our attention to the leading order term, we find that ¢o(y) =
Asinh ky where A is a constant. To determine 4, we must exploit the fact that, as
T — 0, the condition dV/3J = 0 when § = J is recovered. This corresponds to the
condition

(1 - 3)2(—log ) = (- log )

and, noting that k; = 8+ % and &y = 3 — k we find that

(kp — 1)M*

A= T om s (= F)ve

Now ¢ may be used to show that the leading order contribution to §2 is
0y, 7) = T[(1 = A)eH + Ae],

and from this ¥V may easily be recovered and shown to be identical to (4). Moreover,
the correction term for small T may be easily determined.

Some analysis of (6) may also be carried out to examine the limit T' — oo, though
this is a less interesting case since if the sampling of the maximum is very infrequent
the value of the underlying is safeguarded only to a minimal extent. The Fredholm
equation that results from this analysis possesses a separable kernel and may be
solved using standard methods, but the conclusion is the expected one, namely that
as T — oo the fair value of the option becomes exponentially small.
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We now discuss briefly the general case where the maximum is sampled periodi-
cally. Although (6) must be solved numerically, there are many methods for accom-
plishing this in an an accurate and efficient manner, and details may be found in
[1]. Before numerical methods can be employed however, it is essential to have some
confidence that the problem is well-defined for ¢ for all values of y. We have

#(y) = 0N=PAE 4 g(—log N — e, (y> -log))
and so (setting Y’ = —logA) for 0 < y <Y the function ¢(y) satisfies

80)= [ K,)6()s + AWV + £0) g

where

R = [T XK@, fy) = [ Ky, WPt ebejas
Y Y

-E2T )2 o2
E(y,s)= ;\/ﬁ (f"—m’— - e—‘%’—) .

We observe that (7) is a linear second kind non-homogeneous Fredholm equatjon. It
therefore possesses a unique solution (and if it does, ¢(Y") is also uniquely determined
and may be found simply by setting ¥ = ¥ ) so long as the cotresponding problem
with fa(y) set equal to zero has only the trivial solution ¢(y) = 0. That this condition
pertains in the present case is easily shown, (space does not permit an exposition of
all the details, but the required theory is contained in, for example, [61) and is partly
a consequence of the fact that the operator associated with K{y, s} is compact, self-
adjoint and bounded. The problem is thus well-defined and the value of the option
may he calculated for any value of T
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