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Abstract—The slow flow of power--law shear-thinning fluids duting extriision is considered for
materials where the exponent is asymptotlcally close to zero. Such flows arise in a number of
practical industrial problems and give rise to some unexpected effects. Three different regions of
extrusion flow are examined. First, some sunple results for unidirectiona! flow in a one-dimensional
channel are considered. Secondly, the region near to the die éxit is then considered, and it is noted
that an exponential asymptotic approach may be used to completely solve the problem of slow flow
in a wedge with a sink at the vertex. Finally, the ram region of the extruder is considered and
a detailed analysis is given of flow in a corner driven by the movement of one of the walls. Copyright
© 1996 Elsévier Science Ltd.
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1 INTRODUCTION

For many years the process of extrusion has been important in a great number of industrial
processes. These range from the manufacture of propellants for tank guns and the drawing
of optical fibres to the production of beefburgers and potato fries. One of the most common
uses for extrusion is for forming ceramics. Many everyday items, such as pipes, conduits and
building components, are manufactured in this way, and the process is also used to fashion
extruded industrial chemical products

Much literature is available concerning general aspects of the process of extrusion.
A good survey of the extrusion mechanics of paste mixtures is given by Benbow et al. [1],
whilst qualitative guidelines on the design of a variety of different sorts of extruders may be
found in Waye [2]. One of the consequences of the nature of extrusion products is that most
of the materials concerned in such processes are non-linear, and the Newtonian assumption
that the stress depends linearly upon the strain rate does not produce acceptable results.
The material non-linearity leads to some interesting and well-documented effects such as
die-swell, and to model extrusion phenomena accurately it is essential that realistic
theological laws are employed

Many models that attempt to describe the maferial non-linearities found in real materials
have been proposed In the Bingham fluid model (which has proved especially useful in soil
mechanics) it is assumed that, whilst during flow the material is Newtonian, there is
a complete absence of flow until some critical “yield stress” is reached. Another alternative is
to assume that the relationship between the stress and the strain rate is given by a power
law, whilst the Herschel-Bulkley model supplements the power-law relationship with
a yield stress criterion. In this study we shall assume that the fluids under consideration
have zero yield stress (experiments have shown that, although in reality a yield stress is
present, it may be regarded as negligible) but exhibit 2 power-law stress/strain rate curve. In
particular, we shall be concerned with materials that are shear-thinning, so that the
exponent (labelled &) in the power law is less than unity. Typically such fluids flow more
easily under shear as some internal structure in the material is broken down

A large variety of shear-thinning fluids are in common use; some examples are furnished
by cosmetic cold cream (¢ = 0.1-04), chocolate (¢ ~ 04), toothpaste (& a7 0.3), ice cream
(e strongly dependent on temperature), molten polymers (¢ & 0.6) and photographic chem-
icals [31. In some circumstances multinhase fluids mav also he satisfactorilv modelled ac
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Owing to the complications introduced by the non-linearities of such materials, many
authors have resorted to flow codes in an attempt to understand the properties of extrusion
processes. Flow code calculations for flow through a square-entry die were reported by
Zhang et al [5] who were able to identify “dead” regions in the flow where the fluid was, to
all intents and purposes, stationary In most extrusion problems, such regions are undesir-
able as they may lead to a variety of non-uniformities in the extruded product. The
consequences of dead regions may be patticularly severe in cases where the material being
extruded is a food product, in which a long residence time of material in the dead region
may lead to bacterial contamination and other potential health risks

The current study was motivated in part by a particular extrusion problem A clay
suspension is forced by a moving ram through a plate punctured with holes, and the
resulting ceramic honeycomb forms an essential component in automobile catalytic conver-
tors. The clay suspension used in this process has the interesting property that the exponent
¢ is typically less than 1/10, and, under some circumstances, may be as little as 0.03 The
focus of the current study is to exploit the smallness of this exponent; the results are also
applicable to a number of lubricating greases that also possess small shear-thinning
exponents. In all of the industrial processes where such materials are used, the flow is slow
enough for inertia to be unimportant, and accordingly we ignore all inertial terms in the
equations of motion ,

Our'aim is to examine three regions of extrusion flow; these regions are shown schemati-
cally in Fig. 1. Away from the ram or the die exit, the flow is approximately unidirectional,
and accordingly in Section 2 we briefly consider simple one-dimensional channel flows,
showing that when & is small the flow is very sensitive to changes in geometry or material
properties. Next, the flow near the exit of the die is considered. Although experimental and
flow-code studies of such flows are clearly important, it is also crucial that the basic fluid
mechanical properties of such flows are determined. In particular, a theoretical understand-
ing of the flow into a wedge with a sink at the vertex is required This geomietry is
partictilarly amenable to theoretical consideration as it evidently possesses 110 innate length
scale. This allows the governing partial differential equations to be reduced to ordinary
differential equations using a similarity transformation. In Section 3 the general slow-flow
similarity problem is considered, whilst in Section 4 the particular case of wedge flow is
highlighted. Wedge flows of power-law shear-thinning fluids were studied numerically by
Mansutti and Rajagopal [6]. They considered a range of power-law exponents and solved
the resulting ordinary differential equations numerically. For values of the shear-thinning
exponent that were closé to zero, they found that narrow boundary layers existed near
the wedge walls. Such boundary layers are a consequence of the non-linearity of the
stress—strain law that has been assumed. As the value of the shear-thinning exponent
decreased towards zero standard numerical methods proved inadequate and special
schemes that do not explicitly introduce derivatives of the unknown functions were
required. These were discussed in Mansutti and Pontrelli [7] In Section 4 it is noted that, in
contrast to the purely numerical approach described above, for small values of & the whole
problem may be solved in closed form using matched asymptotic expansions An intricate
boundary layer structure is revealed.

Finally, the flow near to the extrusion ram is considered This problem may be tackled by
comsidering the flow in a corner driven by the movement of one wall parallel to itself.
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2, CHANNEL FLOW PROBLEMS

First, we briefly consider the flow in the extruder away from the ends of the device. To
illustrate some of the effects that may appear when ¢ is small, we highlight some of the
properties of one-dimensional shear-thinning flow in a channel. The fluid is assumed to
occupy the region —b < x < b and a velocity of the form q = (0, v(x),0)7 is sought. The
siress tensor is given by

Ty=—pdy; + 1;
where
Ty = pKvi;, K =|(Juiu)l 7 -

The equations of motion thus become

—px=0, (uKv,),—p,=0

Hence p is a function of y only and p, is a constant, which we take to be P > 0 so that the
flow is in the negative y-direction. Imposing the no-slip boundary condition at the walls, it is
easily shown that the velocity for x > 0 is given by
1 1
v=A[x'*e — prt7]

where he

A= "_P_% i 22&\
2ul \1+z¢

The mass flow M associated with this flow is given by

_ it 1l4e

M=—-2pAb Th2%

This flow displays some interesting propertics when ¢ is small. First, we note that if
a pressure gradient P is imposed where when Pb/\/i,u =1 then the mass flow is O(1) In
contrast, we find that if P is slightly smaller than this value the mass flow is very small and
the fluid moves only very slowly, whilst if P is slightly greater than this value the mass flow
is large and so are the corresponding fluid velocities. The details of the flow are thus
extremely sensitive to changes in the pressure gradient. By the same token, an O(g) change in
b, the channel semi-width, leads to an O(1) change in the mass flow The important
conclusion as far as extrusion is concerned is that even minor changes in the flow conditions
may have an important influence on the gross flow properties.

A range of similar Couette flow problems may also be examined by solving the equations
exactly; it is worth remarking that, in these simple cases, the slow flow solutions generated
are actually solutions to the full Navier—Stokes equations as the inertia terms are
identically zero.

3 MATHEMATICAL FORMULATION OF THE SLOW FLOW PROBLEM

For wedge and corner flows we consider a cylindrical coordinate system {r, 8) centred at
the wedge or corner apex and assume that q = ue, + ve, where e, and e, are unit vectors
r and ¢ directions, respectively. We assume that the flow is slow so that the inertial terms in
the equations may be ignored. As discussed previously, the equations of motion are given by

divI =0, divq=0
with
Tij=—pdi; + 1
and
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In component form, this gives

i, Ug U M [y

p"+,uK(u,,+ +— 2A—£)+yK (‘U,.#%-F%)-Z,LLK&]%:O,

(ru)r + Vg = 03
where K is given by
2 2 2L
U v u? DUy Ul ,  2uvg VB,  Dj |2
K=l5+5+53 +— — Sttt -+ .
[ 22 2?2 ¥ 2 Tyt r rz]

Because there is no length scale present, we seek solutions of the equations where the
stream function is given by

y =r'F(8) Q)
u=r"1F'(f), v=—A*"1F(@)
Defining m = (& — 1)/2 (the notation used in [6]) we have

@m
22mr2m(2 —A)

so that

K=

where 4}(1’, })
O =(8(1 — A)PF'? +2F" + 24*(2 — MWPF? 4+ 203 — )FF"),

and the equations of motion are

gzm [O™(F" + 12F") + 4m(d — (A — ) F'O" + (@Y (M2 — HF + F")] =0,
= + 5 [q)M(z (P + A2F) + 2m{ — JO7(F" + A2 — HF) — 24— DF (@Y1 =0

where k= A — 3 4+ 2im — 4m;
Elimination of the pressure by cross-differentiation gives

OMF" + (@2 + (2= D[ = D — 4?) + dm( — DDF”
+ A2 — Dk + DL+ 2m(d — 2)F)
+ (@Y QF" + 24+ (A= D — 2)(Bm + 2)F)
+ (@Y (F" + 42— HF) =0 ?

Equation (2) must be solved subject to suitable no-slip and symmetry conditions. In its most
general form, this problem must be solved numerically, however we wish to focus our
attention on particular values of 4.

4 JEFFREY-HAMEL FLOW IN A WEDGE

The die exits of extrusion devices used to make parts for catalytic converters typically
contain hundreds of holes. Frequently, during extrusion, dead regions may form that divert
the flow preferentially through some holes, whilst restricting the flow through others. This
restriction may lead to hole blockage. The severity of the product design constraints means
that, under some circumstances, production may have to be interrupted if as few as four
holes are blocked. Experimental evidence has shown that such choking tends to occur more
at low flow rates, suggesting a linkage between choking and dead zones. It is also known
that the flow is sensitive to hole dlameter and surface roughness In order to be able to

o~ ot et
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Viscous flow in a wedge with a source or sink at the vertex is a classical fluid mechanics
problem and has been studied in many different forms and for many different types of fluid.
For a linear viscous fluid (“Jeffrey-Hamel flow™} it has long been known that there is
a critical wedge angle beyond which pure inflow or outflow solutions are impossible and
regions of reversed flow are necessarily present [8] This is esseritially a consequence of the
inertial terms in the equations, and it may easily be shown that for non-inertial flow no such
maximum wedge angle exists. To analyse purely radial symmetrical shear-thinning flow in
a wedge we set A = 0 in (1). Assuming that the wedge occupies the region —o <X 8 < o and
that the total volume flux is given by ¢ so that

J rudl = ZJ F(8)df = g,

J—a 0
we are required to solve the ordinary differential equation
QLF + (4 + 8m — 16m*) F"] + (@™ [2F" + (4 + 16m)F ] (®@™)'F' =0
with boundary conditions

F(0)=0, Fla)= —g, Flo)=0, F'(0)=0,

The differéntial equation may be rewritten
F"{4F'% + F"2) (4" 4+ eF") + (¢ — 1)JIF”I*'""”(32¢91‘“’3 + eF"2F™
+ 166FF" + 12F2F" — 16F'F"? + 32F3)
+ 4F"(—2F"* + 1662F"™ + 482 F2F"? — 2F"* + 4eF"™* + 4F?F'?) =0

and considerable simplifications may now be made by first setting F' = — ¢® (this gives
solutions corresponding to flow towards the vertex; for the outflow problem the negative
sign is metely omitted} and then further substituting G’ = f. The problem then reduces to

(f2+H@E+ef)f (L )12 +efHf(f')
@ FAOFIALF 267 + (1 + 2971 + 2@+ =0 (9

with boundary conditions f(0) =0, and f=o((f — )~ ') as 6 — « The latter condition
ensures that G » — oo as 0 —«; f may also be O((6 — %)~ *) so long as the constant of
proportionality is strictly positive.

The solution of the problem described above proceeds via the method of matched
asymptotic expansions [9] by considering the limit of interest in the current, study, namely
g — 0. The asymptotic analysis reveals that various terms of {3} arc important in various
different regions in the flow In the interior of the wedge there is an “outer” region, whilst
adjacent to the wall @ = ¢ there is a narrow boundary layer, This boundary layer has
a subtle structure with three separate regions of behaviour, The structure of the solution in
these “inner—inner”, “inner” and “transition” layers and the required matching may be
completely determined in closed form; for details the reader is referred to Brewster et al.
[10]. Netwithstanding these somewhat technical details, most of the flow takes place in the
outer region and therefore much of the behaviour may be gleaned by considering this region
only

In the outer region where both 8 and f are order one we may determine the lowest-order
behaviour of the solution by setting & = 0 in (3). This gives

@+ =3V + @+ =0

which possesses a first integral

A a2
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where A is a constant, which physical arguments show must be greater than +/2. This may
be further integrated to yield an imiplicit solution for f(0) in the form

B:tan'lwﬂLtan__l( A+ﬂw)
A2 -2 A—2

1
w = tanh (E sinh ¢ g)

This solution does not diverge in the correct manner as 6 — o, which is why there is
a boundary layer structure near to the wedge walls. Nevertheless, in order to make f(6)
large as 6 — o, we require that A satisfies the equation

A A 2
oc—~—~——2tan”1( +\/_)—

A2 4-/2

thereby determining the wedge semi-angle  in terms of A4.

By examining the original equations, the physical significance of 4 is easily determined; it
transpires that A is the pressure gradient in the flow. We further find that the leading-order
pressure gradient simply determines the order of magnitude of the mass flux and the actual
value of g is determined by the next order correction to the pressure gradient. We note that,
for a prescribed wedge semi-angle o, A is effectively determined. If the applied
pressure gradient P is not equal to 4, then the mass flux is no longer order one; in fact
if P < A the mass flux is exponentially small, whilst if P > A4 the mass flux is exponentially
large. This confirms the extreme sensitivity of the flow to pressure gradient and
geometry.

Comparisons between the asymptotic solution and the numerical results of [7] show
excellent agreement; for small values of ¢ the differences are negligible. Furthermore, the
results of the asymptotic analysis remain satisfactory even for values of the shear-thinning
exponent up to about 0.3 Figure 2 shows a typical velocity profile exp(G(#)) (= —u/r),
computed with 4 = 1.9121 (corresponding to a wedge semi-angle of 1 radian) and & = 0.12
(m = — 0.44). The value at § = () predicted by the asymptotic solution is 1.396, which agrees
well with the value of 1.393 from the numerical calculations of [7].

where

n
4!

U _ GO

Velocity
o
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5 DRIVEN FLOW IN A CORNER

Finally, we examine the flow near to the extrusion ram. Locally, it is evident that the flow
is equivalent to that produced by driven flow in a corner, the flow being produced by the
movement of one wall parallel to itself Many rams are not straight-faced, so the analysis
below is carried out for a general corner angle, labelled a. For simplicity we assume that the
wall 8 = o is fixed and that the wall # = 0 moves with a (constant) velocity Ue,. For the ram
(Fig. 1), U-would be negative. In contrast to the previous section, we consider the case where
there is no: net mass flow into the corner » = 0 of the vertex

The physical problem described above suggests seeking a solution to the equations of
motion presented in-Section 3 with 4 = 1 and boundary conditions

FO)=F@) =0, F@) =1 F)=0.

For simplicity, U has been scaled out of the problem; for values of U not equal to 1,
asolution may be generated by simply multiplying F by U Because the strain rate  changes
sign in this problem, a fittle extra care is required to ensure that the viscosity is interpreted
correctly Substituting 2 = 1 in the equations of Section 3 gives

‘ur*Z*Zm
—pr o LRI (F + F)) =0,
F—Z—Zm
g%‘? + szjm—[(l — 2m)| D" (F* + FY] = 0.

Elimination of the pressure terms gives
[®["(F" + F)1" + (1 ~ 4m?)| @™ (F" + F) =0,
and this may be solved by defining G(8) = |®™(F” + F) so that G satisfies the equation
G’ +(1 —4m?G =0 @

Since in the current study we are interested specifically in shear-thinning fluids with
0 < e < 1, the parameter 1 — 4m? is never negative; we remark in passing that for shear-
thickening fluids with ¢>> 2, equation (4) will possess exponential solutions Defining
Y= \/ 1 —4m? = \/ 2¢ — &% for convenience, we find that

G = Acos(v0 + B)

where A and B are arbitrary constants. Using the definition of G(8), we find that F satisfies

F' + F = 4(0)
where

a(0) = Acos(vd + B)| Acos(vd + B[+ .

The solution to this equation is given by

8 0
F= sin9|:J q(t)costdt} — cosQI:J q(r)sintdt] (5)

and the boundary conditions must now be imposed Two of the boundary conditions may
be satisfied by taking C = o and D = 0; the remaining two conditions then require that
A and B be chosen so that

Ja g{t)costde = —1 {(6)

r g(O)sintdt =0 N

Before considering the case of asymptotically small ¢, we note that, when the flow is
Newtonian, we have e = 1, v = 1 and g(t) = 4 cos(t + B) Conditions (6) and (7} give

_ I sin?e ] —2sin?a
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and the stream function is therefore given by
F
Y =rF(0) 2 s’ [o(x — B)sin & + Osinosin(d — a)]

It is easily confirmed that this is the correct solution for the Newtonian case & = 1.
Whn ¢ is small, it is possible to proceed using matched asymptotic expansions as in the
previous section In the current case, however, it is simpler to determine 4 and B directly
from (6) and (7). To do this, we note that if (7) is to be enforced for arbitrary o, then there
must be a point in the interior of the interval [0;7/2] where v + B takes the value /2 so
that the cosine term in g(z) changes sign. This allows (7) to be written
=j2-B

J. " (cos(vt + B))% sintdr — J {—cos(vt + B))% sintds =0.
0 =28

Denoting the integrals ih_ the expression above by I, and I, respectively, we consider the
limit & > 0, using Laplace’s method to determine asymptotic expansions for Iy and I,.
Considering I, first, it is convenient to write the integral in the form

I, = Jﬂt__— exp'(@) g(t)de

0 4

where h(f) = logcos{vt + B), g(t) = sin¢ In the region of integration, A{f) takes ifs max-
imum value at the lefi-hand end-point t = 0. For small ¢, the integral will therefore be
dominated by the behaviour near to this point, other contributions being exponentially
small. By expanding g(t) and k() in the normal way as Taylor series about t =0 and
ignoring exponentially small terms, we find that

-1
£2(cos B)® &>
I =— ) P—= 2z

v*tan® B y*tan“ B
As usual when using Laplace’s method for integrals, the method given above may be made
rigorous if required by invoking Watson’s lemma [11].
. If I + I is to be zero, the conttibution from I; must balance with I, the contribution
from the right-hand end of the interval In the latter case, the maximum is at the point ¢, and

Laplace’s method may once again be used to estimate the integral, The requirement
imposed by (7) thus becomes

1 1
g*(cos B)? &> g(—cos(va + B)F| . £COS X
I I, = 1- — | =0
1 N B vZian® B + vtan{ve + B) sina vtan(va + B)

Rearrangement of this expression reveals that

&
X £COS
vtan’ B (sm o+ _____)
0

t B
cos B + cos(va + B) vian(a + B) =

3
—&t Bll——5——=
gtan(va + )( T ian? B)

Now, by expanding for small &, we find that to lowest order,

T ot

ﬁoc
B=__ 3,'21 342 8
3 —2\/54———4 g loge + O(>%) 8)

/3

Now that B has been established asymptotically, we may also find 4 Splitting the
integral in (6) into two parts, (6) becomes

AJAF 1+ T = — 1L ©)
where

pr2-E Aaeicnedvr + BN re {oe(— cos(vt + BD\
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Again, Laplace’s method may be used to estimate the integrals. Accounting for the
contributions from each integral, we find that

1 1
&(cos By® & &(—cos{va + B))* gsin o
J Jo = 1-— . -
DR p Y |: v*tan? B] * Btan(e + B) | 0 vtan(va + B)
With B given by (8), we find that

&0

2 1
Ji+J = (cos’B)% 4' [l —zloge] — (—cos{ve: + B))% i [1 + ¢ oga}

2cose 2

and it is convenient to rearrange (9) as

1
1 1] e®(1 —gloge) (cosva)oe eloge :
; By _ &) =1
A|A]7™ " (cos B) [ 3 S cos s +— (tanvatanB — 1)

This may now be expanded for small ¢ to show that A is negative and given, correct to \/E,

by . -

2 2 2\

A=— i + \/—*8 —6loge + a2 — 12log A+ 0(c**loge). (10)
wfe 122 i

The asymptotic estimates given by (8) and (10) may easily be checked by some rather
tedious but basically fairly simple numerical calculations Table 1 compares the numerical
and asymptotic values of 4 and B for the cases £ =02 and 0.01 for various wedge
semi-angles «. Clearly the agreement between the asymptotic and exact values is excellent,
and improves for small values of &

Now that we have found B and 4 asymptotically, we can also give asymptotic expression
for solution (5) and the velocities u and . It transpires that these expressions are somewhat
cumbersome, and so for convenience they are given in the Appendix.

Figure 3(a) and (b) shows the streamline patterns for the Newtonian and shear-thinning
(& = 0.1) cases, respectively The wedge angle in both cases is given by « = 1 and U is taken
to have the value 1. In the Newtonian case the relevant values of B and A are 09145 and

— 6.123, respectively, whilst for the results shown in Fig. 3(b) we have B = 1.3244 (asymp-
totic estimate 1.3214) and 4 = — 5.5292 (asymptotic estimaie — 5.6442). For the Newto-
nian case the streamline furthest from the wall has a value of 0.1631, whilst for the
shear-thinning case the corresponding streamline has a value of only 0.04287. The concen-
tration of the streamlines near to the moving wall is also clearly visible in the non-
Newtonian case,

Velocity profiles for the same cases are shown in Fig. 4(a) and (b). The boundary layer
structure in both velocity components and the order of magnitude decrease in v is
immediately apparent for the non-Newtonian flow of Fig (4b). For practical purposes, one
quantity of interest is the mass flow into and out of the wedge, which we refer to as the
“throughput™ M. This is defined by the expression

1 re :1
M=§J‘ lu1d9=j ud@

Q 0

where 0 is the interior value of & where u is zero.

Table 1 Comparisen of numerical and asymptotic values

£=02 & =0.01
Numerical Asymptotic Numerical Asymptotic
o B A B A B A B A
0.1 1.5349 — 713826 15341 — 74.6110 15636 — 1499450 15636 —153.1527
02 14990 — 310775 14974 — 329295 15563 — 739090 15563 — 757980
0.3 14631 — 191131 1.4607 —20.2522 15491 — 491862 135491 — 500183
0.5 13915 — 10.3964 13872 — 10.8759 15346 —293361 15346 — 29 7267
10 12144 —4.5925 12037 — 4.6007 14985 — 14.5955 14985 — 144684

15 1014272 — 7 R0A4 100d — 27401 14/74 — QMK 144272 — 7171
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Contour key

0.0000000
0.0181222
0.0362445
00543667
0.0724889
0.0906111
0.1087333
01268556
01449778
0.1631000

S0 60 =1 N LA B LI B =

o

(@ Y

Contour key

0.0000000
00047633
0.0095267
0.0142900
0.0190533
0.0238167
0.0285800
0.0333433
0.0381067
0.0428700

OO0 PN -

|
i

®

Fig. 3. (a) Streamline patterns for Newtonian flow (¢ = 1) in a driven corner (wall velocity = 1) of
angle ¢ = 1 radian. (b} Streamline patterns for shear-thinning flow (& = (.1} in a driven corner (watl
velocity = 1) of angle oo = 1 radian.

For the Newtonian case, it is easy to confirm that 6, is given by the solution in (0, &) of the
transcendental equation

o2 cos B, + sin® a(f, sin 0y — cos ) + (sinecosa — a)(fycos 8y +sinfg) =0 (1)

and that the throughput is given by

a?sin 8y — Do sinasin{e — 6) — ablgsinty
a® —sin® o '

RO RS T
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Fig 4 (a) Velocity profiles for Newtonianflow (¢ = 1) in & driven corner (wall velocity = 1) of angle
=1 radian. {b) Velocity profiles for shear-thinning flow (¢ =01} in a driven corner (wall
velocity = 1) of angle o = 1 radian

For the shear-thinning case, a series expansion for 8, may be determined from the
asymptotic expression for u, giving
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In order to determine an asymptotic form for M, it is necessary to integrate the expression
for u given in the Appendix between 0 and 8,. Laplace’s method must once again be
employed to perform the integrations, and, after some rather lengthy algebra, it transpires
that M is given by the particularly simple expression

M =¢ + O(%loge).

We note that, in contrast to the Newtonian case, M does not depend to leading order on the
wedge semi-angle o This confirms that for small ¢, the narrow boundary layer sees the onter
flow as essentially stationary, and hence is unaffected by the value of «

6 CONCLUSIONS AND DISCUSSION

The flow in three different regions of a ram extruder has been examined. In each region,
the results clearly indicate that, when the shear-thinning exponent & is much less than unity,
the flow exhibits some interesting properties.

For one-dimensional channel flow, small changes in the geometry may have an altogether
larger effect on the mass flow rate. In practical extruders the effective geometry may be
changed by hole blockage and dead region formation The analysis presented above shows
that the fact that such ostensibly small blockages may seriously affect device performance
should come as no surprise.

For wedge flow towards a sink, it has been shown that the wedge angle effectively
determines the pressure gradient. If the pressure gradient is not “correct” then the flow rate
is necessarily either exponentially small or exponentially large. In any case, wedge flows
exhibit boundary layers near to the wedge walls. Such flows are completely reversible and,
in contrast to inertial Newtonian flow (where there is a maximum wedge angle beyond
which no pure outflow or inflow solutions exist) the boundary layers here are entirely due to
the non-linearity of the fluid. In fact, when the inertial terms are retained in the equations,
boundary layers of a more familiar form exist in regions near to the wall; a full study of such
inertial boundary layers was carried out by Pakdemirli [121.

For driven corner flow near te the extrusion ram, it has been shown that, when the
shear-thinning exponent is small, boundary layers exist near to the moving wall, and the
throughput of fluid is dramatically reduced. Moreover, to leading order, the throughput is
independent of the wedge angle.
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APPENDIX

Using the notation employed in the main body of the test, we have

] o
g{/zr[—cusﬂ(J f(t)sintdt)—sinG(J. f(t)costdz)],
0 8

@ x
U= sinﬂj f(®sintdr — cosGJ. f(@)costdt
0 6

b =cos0d rf(a)sintd; +5ind rf(z) costdr.
[ ]
To determine these quantities it is therefore sufficient to determine small-g approximations to the integrals
A = J:f(t)sintdt and A, = wa(t)costdt‘
@
Noting that the sign change in cos(vt + B) occurs when 8 = ¢ where

£=2 121 ioge)+ 0(logy
==t —(=— g
5+ 15loge 22log

we find (using Laplace’s method and proceeding to second order) that for 8 < £

onlin

l(;2

6vZtan® B

g*(— Acos B)
v tan?® B

A =— [1 (1 + ky)e™" — 6 — (k3 + 3kT + 6k, + 6)6”“):|

where ky = (6v/e) tan B.

When 6 exceeds £, the integral must be split up again and there is a new endpoint local maximum to be included.
Further use of Laplace’s method yields the asymptotic form for A; when 8 > &

1 1
&2(— AcosB)* 22 2(A cos(vé 4 B))*
v? tan® B vZtan®B vtan(vd + B)

where k; = (— (£ — @) vtan(vd + B))/a.
A similar procedure may be used to approximate A, We find that

gcosf

Ay =— _
vtan{v® + B)

|:sir1 0(1 — &) — (—1+(1— kl)eh)}

esin 6

1
_ 1 ¢(cos(v8 + BY)®
Ba= (0 4) [_ vtan{vd + B)

— k3 _
vtan{vd + B) (COS o D+

(1 +e*(ky — 1)))

1
&(— cos(ve + B))*
vtan{ve + B)

gsine
vtan(va + B}

where k3 = —((£ — )vtan(ve + B))/e and k4 = (évtan(ve + B))/c.

(cos a(l —ebs) + (—14e*{1— k4)})j|






