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1.Introduction

In recent years there has been a large increase in the volume of literature pertaining to ‘mixed’
systems of partial differential equations In order to fix the terminology which we shall use,

consider a system of conservation laws
wy+ Aw, = § {1

where A is an N x N matrix, w is a N-vector, § is an N-vector of source terms and subscripts
denote differentiation When the eigenvalues of A are non-zero, real and distiact, the system 1is
hyperbolic and many (though by no means all) of its mathematical properties are known (see, for
example SMOLLER (1983)). In the strictest sense, the system 1 is said to be of ‘mixed type’if any
of the hyperbolicity conditions on the eigenvalues of 4 fail, so that for example two eigenvalues
become equel, or an eigenvalue has a non-trivial zero. We shall be concerned mainly however with
the much more serious case when some or all of the eigenvalues of A become complex, so that
the problem is ‘elliptic in time’ In this case it is tempting to discard the problem completely,
arguing that the innate i]'l»posedness of the system and need for boundary conditions at £ = o
precludes any meaningful analytical or numerical resulis The fact remains however that such
systems occur with surprising regularity. Because of this, a number of questions can be posed -
(2) Can such complex sound speeds ever occur in & correc? mathematical model ?
(b) Even if complex eigenvalues are present, do they occur in regions of phase space which the
model ever enters ?
{c) If complex eigenvalues can never occur in ‘correct’ models, is there ever any point in studying
mixed problems for ‘physical’ systems 7
{d) If we do study such problems and ultimately attempt to find a aumerical sclution, what effects
can we expect to arise from the ellipticity ?

As far as {a) above is concerned, we can be fairly sure that equations which turn out to be
mixed in some regions have a ‘mistake’ somewhere in them Although we distinguish between

mixed systems where in some regions of phase space all of the eigenvalues are complex, so that
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the region is truly elliptic, and ‘semi-elliptic’ systems where only some of the eigenvalues become
complex, leaving at least some information propagators, both must be considered to provide
condemnatior of our model What is more difficult however in many cases is to see how the
model should be changed. Often in a mixed system the physical assumption which has led to
ellipticity is a constitutive one. In the equations of gas/particulate flow which we study in detail
below, there is no doubt that the ‘wrong’ assumption is that a single pressure characterizes both
phases - the pressure on the surface of a sphere moving through an inviscid fluid is simply not the
same as the pressure far away from the sphere. Although modelling work is continuing with the
aim of representing the interfacial pressure terms correctly, the fact is that at present the only
equations available to us are ‘incorrect’ ones As far as (b} above is concerned, it is certainly
true that in some mixed systems the elliptic regions are unlikely ever to be entered, though
it should be remembered that numerical solutions might nevertheless siray into them due to
discretization errors As we shall shortly see however for some equations the “forbidden’ regioﬁs
cannot be avoided. It clearly makes sense therefore ;:o study both physical mixed ptoblems and
also prototype systems of such equations. The points that we have made so far provide a rapid
answer to {c); although we realize that a mixed system of conservation laws has serious faults, it
may represént the best physical mode! which is available. To consider any worthwhile problems,
we have to use the raw materials, however poor in quality they may be, until our modelting skill
improves to a level where the equations can be trusted

What effects do complex regions of phase space have on numerical schemes 7 It is no surprise

that the news here is nearly ali bad A quick consideration of the system
we + Az, fo)we = 0

where the matrix A has been “frozen’ at some time ¢y and position @gshows that if in the wsual
way we let P be the matrix of eigenvectors of A and D be the diagonal matrix composed of
the eigenvalues of the ‘frozen’ matrix 4, so that A = PDP~1, then defining w = P~lv allows
us to diagonalize the system. Taking the complex Fourier transform shows that the differential

equation for V;, the transform of »; is
Vie + Xikl; =0

Under normal circumstances the solutions to this are purely oscillatory, but if one of the eigen-

values is complex then either it or its conjugate will inevitably lead o an exponentially growing
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mode. Thus any numerical inaccuracies will grow and eventually swamp the correct solution,
their rate of growth being determined by the size of the imaginary part of the complex eigenvalue.
Needless to say, it may also be shown that schemes which are TVD for hyperbolic systems become
non-monotone. The only good plece of news is that, somewhat surprisingly, there are circum-
stances where strong source terms may help the stability when the eigenvalues are complex. This

is in contrast to the situation generally ercouniered for strictly hyperbolic systems.
2. Mixed Systems in Industrial Problems

The discussion above has provided the motivetion to study mixed problems, and this has been
undertaken for both physical and prototype systems of conservation laws. One of the first systems
to be recognized a8 mixed was the iraffic flow problem described in BICK & NEWELL (1961)
Whilst realizing the significance of the complex eigenvalues, they only considered the hyperbolic
region, remarking that ‘As yet we have found no satisfactory explanation of why the equations
should be elliptic, nor any satisfactory suggestion as to what one should do about it’ JAMES
(1980) considered a mixed system arising from waves in elastic bars, whilst EATTORI {1986)
considered the flow of & Van Der Waal’s fluid which led to a mixed sysiem, showing that the
concept of an ‘admissible’ solution could be physically motivated. Perhaps the most important
contribution to the subject was that of BELL, TRANGENSTEIN & SCHUBIN (1986} who con-
sidered a model for the three phase flow of cil, gas and water in a porous medium 7Their numerical
calculations showed that when the initial states of 2 Riemann problem were chosen to be outside
the elliptic region, the solution appeared to remain in the hyperbolic region for all time, They
also found stable shocks connecting states inside the non-hyperbolic region with states outside.
As well as these physical problems, many authors have considered prototype mixed problems,
most using the classical sclution of the Riemann problem for 2 X 2 systems of conservation laws
described in LIU (1974,1975) as a starting point KEYFITZ & KRANZER (1983) studied Rie-
mann problems for nonstrictly hyperbolic 2 x 2 systems where although the eigenvalues were real,
they coalesced at an umbilic point They found that in contrast to the strictly hyperbolic case
where two waves are always sufficient, as many as four were necessary to construct a solution, A
peculiar feature of some sclutions was that for a given left state, the Hugoniot locus of the siate
was not necessarily connected to the state itself This was also noted by SHEARER (1982) who
solved a class of mixed conservation laws, producing a solution which involved stationary shocks

not possessing viscous profiles, which left some doubts about their admissibility SHEARER,
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SCHAEFFER, MARCHESIN & PAS-LEME (1986) identified ‘undercompressive’ shocks which
did not fully satisfy the Lax entropy condition, but for which viscous profites could be found More
recently HOLDEN (1987) studied a mixed problem which was elliptic in & closed region of phase
space. She found that although the system always had a weak solution which could be constructed
in the normal way, it was not unique Finally, mention should be made of the work of ISAACSON
& TEMPLE (1985) and SCHAEFFER & SHEARER (1987) who have made a concerted attempt
to solve and classify the general 2 x 2 system of non-strictly hyperbolic conservation laws with
quadratic flux functions

Interest in mixed systems, both of elliptic 2nd non-strictly hyperbolic type, is therefore great
The theoretical work shows us that some novel numerical and analytical phenomena may be
expected. 'i‘o show that these are actually encountered in the study of physical systems of con-

servation laws, we now consider a specific example.
3. Two-Phase Gas/Particulate Flow

Lét us now turn our attention to a specific mixed system, namely the equations of quasi one-
dimensional two phase gas/particulate flow. These have been studied at length with the particular
defence application of internal ballistics in mind In this scenario, a highly energetic solid burns,

becoming part of a gas phase. The classical eguations which have been used by many authors are

(p1A10)e + (prd111): = mp+ 1

(p2da): + (p2hous)e = -~
(prArw)e + (01 A1ud)e = —A1pe — D+ thug
(p2Azto)e + (p24203)e = —Azpe+ D —1hus — 5S¢
(a1 En)e + (1w (Ex + ﬁ)) = —p(Azus)s + mpep — ua D + nEs
-¢-Q

(N2)s + (Naug)e = 0

Here the subscript 1 refers to the gas phase, 2 to a solid phase, which we take to be a granular
material and p to the primer gas which initiates combustion We also use § = intergranular
stress, I} = Interphase drag, ¢ = interphase heat transfer, Q@ = heat loss to surrounding solid
boundaries and i = gas mass addition due to burning, all of these terms being specified by
various constitutive laws Alsc we have E = E; + ¢ where ¢ is the internal energy and N, =

number density of solid particles per unit length
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To this model we must also add an equation of state, which we take to be the co-volume gas law
relating pressure to temperature and density, and suitable boundary conditions.

For the forthcoming discussion, it is convenient to produce 2 simpler (though identical in
type) prototype system of equations by setting all the source terms to zero, assuming an ideal
gas and an incompressible solid and allowing motion to take place only within fixed boundaries
(Normally one boundary will represent the base of an accelerating projectile so that the mesh

expands), The equations become

(oA + (wprdi)e = 0
(Ag)e + {upda): = 0

(1) + tathie +P2/pn = 0 (2)
(u2)e + (u3/2+p/p2)e = O

{P)e + mpz + (py/ A )(ur A1 + u2do)e

1
o

It should be noted that the equations are not in conservation form This is a consequence of the
averaging which has been used and is unavoidable Proceeding in the standard manner, we find
that the eigenvalues of the system are given by A = ye + u; where ¢* = yp/p, and y satisfies the
equation,
Yyt -2V + PV — g - 1)+ 2Vy - V?) =0

where V = {(uz — u1)fc and g = (Aap1)/{41p;) Clearly the zero sound speed corresponds to the
incompressibility of the solid phase, but the behaviour of the roots of the remaining quartic is
less clear For V = 0 {both phases moving with the same velocity) we find trivially that there are
two more zero and two real roots, but some elementary analysis shows that for non-zero V the
equation has four real roots if and only i V2 > (1 + q%)s, and if this condition is not met then
there are two real and two complex sound speeds. A diagram of the region in (g, V?) phase space
is shown in figure (1), and we note that for any ¢ as scon as there is a relative velocity we must
pass through a semi-elliptic region C of phase space before reaching a strictly hyperbolic region

T when the relative velecity is large enough
4. Numerical Results

To study the effects of the complex eigenvalues on numerical solutions to the prototype system,
it is convenient to consider various Riemann problems where initially a ‘left state’ w = wy and a

‘right state’ w = wp are separated by a 'membrane’ which bursts at time ¢ = 0 Instead of using
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TVD methods or other more sophisticated schemes, the very simple Lax - Friedrichs scheme was
used so that phenomena arising from the existence of the complex eigenvalues could be clearly
distinguished. The conclusions apply however to any scheme which may be used Of course the
Lax-Friedrichs scheme is first order, and so for accuracy many {typically of the order of 1000) mesh
points must be used The scheme is also monotone (that is, free from aay spurious oscillations)
for strictly hyperbolib problems, so that any non-monotonic effects which we see must either be
part of the actual solution, or numerical consequences of the complex eigenvalues

Calculations were performed with 1000 space steps and a Courant number of 0.9, for 2 fixed
right state

wr = (p141, Ag, v1,u, p)¥ = (005,0.5,5.0,20,0.12857)T
and three different left states (see figure (1)) which started outside, moved a little way into C,
and finally lay well within C

The results of these computations at time ¢ = 0.05 are shown in figures (2) to {4} respectively
In figure (2) where both initial states are in R, it is clear that 2 smooth, physical sclution is
obtained, which is, as one would expect, similar in many ways to a solution of the standard shock
tube gas dynamics problem In figure (3) the left state lies just inside €, and whilst the sclation
still looks reasonably physical, the phase diagram shows that the complex region has been entered,
and some puzzling non - monotonicities are present in the pressure and density profiles These
occur neer to ¢ = 0 7 and are magnified in figure (4) as the left state penetrates deeper into C.
The velocity and phase diagrams for these two final cases are also most revealing - a potentially
disastrous amplification is taking place and the phase path is extending further and further away
from the left and right states into the complex region. It need hardly be said that the solution of
figure (4) looks most unphysical.

To display the problems caused by the complex eigenvalue region even more clearly, figure
(8) shows the phase diagrem for a calculation made with both states very near to the right siate
wg € R used above As expected, the probiem exhibits “well-posedness’ in that the phase path
remains close to both states The situation in figure (6), when the states are close to each other
but lying near to w3 € C is very different As time progresses, the pressure develops a bizarre
shock system, which later computations (not shown) reveal to be a stable propagating profile
{though in some circumstances growing unboundedly) The phase diagram of figure {6) confirms
this - the phase paths wander, via a sequence of shocks and rarefactions, ever further away from

the originally adjacent left and right states It is worth pointing out the contrast between these
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results and those of Beli, Trangenstein & Schubin, whose region of ellipticity was closed
4. Conclusions and Discussion

We have seen that the equations of quasi one-dimensional two-phase flow which are frequently used
as the basis for numerical calculations of internal ballistics flows have complex ¢igenvalues under
certain conditions which are physically realisable Experience has shown that numerical problems
in internal ballistics codes have often been accompanied by profiles similar to those in figure (6)

Space does not permit a full discussion of all the mixed problems which we have studied, but the
main point of this paper is to ercourage the study of mixed systems in their own right. Certainly
models which lead to mixed systems have their faulis, and in some cases the very existence of the
complex eigenvalues may point the way to better modelling For complicated problems however,
often we have to make the best of the equations which we have. An alternative to this is is to add
equations piecemeal to the system until we arrive at a totally hyperbolic system This has been
attempted by many authors and wsually results in a model which is unphysical in some regions of
phase space. Surely it is preferable to use equations whose underlying assumptions and derivation
are clear, even if they do contain some complex eigenvalues All that we must ensure is that their
limitations, faults and possible associated problems are well understood. This last caveat, after

all, iz the litany on which all mathematical models are based.
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