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A 2D steady model for the annular two-phase flow of water and steam in the steam-generating boiler pipes
of a liquid metal fast breeder reactor is proposed. The model is based on thin-layer lubrication theory and
thin aerofoil theory. The exchange of mass between the vapour core and the liquid film due to evaporation
of the liquid film is accounted for using some simple thermodynamics models, and the resultant change of
phase is modelled by proposing a suitable Stefan problem. Appropriate boundary conditions for the flow
are discussed. The resulting non-linear singular integro-differential equation for the shape of the liquid
film free surface is solved both asymptotically and numerically (using some regularization techniques).
Predictions for the length to the dryout point from the entry of the annular regime are made. The influence
of both the tractiorr provided by the fast-flowing vapour core on the liquid layer and the mass transfer
parameter; on the dryout length is investigated.

Keywords singular integral equation; dryout point; LMFBR.

1. Introduction

In modern nuclear power plants, the raw material of nuclear energy production is natural uranium.
This is principally because its two isotopg$3® andU 238 possess nuclear characteristics that are very
favourable to the production of atomic energy in a reactor (seeMagay, 2000. A typical nuclear

reactor possesses two key components, namely a reactor/core component (or a fuel element) and a
boiling/heat exchange component. Nuclear fission and energy conversion take place in the reactor com-
ponent, where heat is generated and transferred to a coolant. Heat is then transferred from the coolant to
water in the boiling component where steam is produced to drive turbines that generate electricity.
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Nuclear reactors of many different types exist (see, €dallier & Hewitt, 1987). One factor that
differentiates between various reactor designs is the type of coolant used. In a liquid metal fast breeder
reactor (LMFBR), e.g. a liquid metal is used as the coolant. Liquid sodium is a common choice of
coolant since it has a high boiling point of 8&3at atmospheric pressure, allowing the nuclear reactor
to operate virtually unpressurized. Thus, in the event of a loss of coolant accident (LOCA) in which the
integrity of system components is compromised (Sekier & Hewitt, 1987, the damage and spread of
contaminated material are minimized. (The melting point of sodiumi€98Il sodium pipes therefore
have to be heated to avoid solidification at room temperature.)

The first fully functioning LMFBR was the EBR-1 (experimental breeder reactor) at Idaho Falls,
USA, which first generated electricity in 1951. Its successor EBR-2 successfully generated power
(mainly for test- and material-proving purposes) continuously from 1967 to 1994. Both the French/
European Superphenix and the Japanese MONJU LMFBRs were dogged by sodium leakage problems
and neither is currently in operation, but the LMBFR principle has been triumphantly verified by the
560MW BNG600 reactor in Beloyarskiy, Russia, which has operated commercially since 1981 and was
still successfully producing power in 2008. For a much fuller discussion of the history of LMFBRS, see,
e.g.Murray (2000).

The boiling component of a nuclear reactor is composed of bundles of steam-generating boiler pipes.
Water is pumped through the pipes, and heat is supplied from the liquid metal which flows in a counter-
current direction in outer casings surrounding the pipes. As the water temperature increases, the water
begins to vapourize, driving a two-phase flow of water and steam. In a typical boiler pipe, the water and
the steam generated give rise to a variety of flow regimes: these are shown schematicallylin Fig.
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FIG. 1. A schematic representation of a vertical boiler tube.
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Which particular flow regime pertains depends in a complicated fashion upon the amounts of each
phase present, external effects such as orientation of the pipe and the flow parameters such as pressure
and heat flux. Detailed descriptions of the various flow regimes are given, eGQpllier & Thome
(1999 andWallis (1969. To summarize briefly, the flow typically consists of a single-phase subcooled
region near to the water inlet. The water in this subcooled region is heated to the saturation temperature.
At some point along the pipe beyond this region, the water becomes superheated and bubbles start to
form at nucleation sites on the pipe wall. As the bubbles grow, they detach from the wall and begin
to form a bubbly flow region where the vapour phase is distributed as discrete bubbles in a continuous
liquid phase. As more and more bubbles are produced, they first amalgamate to become larger bubbles
and then to form a slug flow region where vapour may be present across the whole width of the pipe.
Under certain flow conditions, churn flow, where the vapour regions in the plug flow break up to form
irregular and unstable bubbles, may also be observed. Eventually, however, annular two-phase flow is
established.

In the annular region, a relatively slowly moving continuous liquid film on the pipe wall surrounds
a core of fast-flowing gas. The vapour core invariably contains liquid droplets which may originate
from undercutting of waves that are present on the film surface. No appreciable bubble nucleation takes
place at the pipe wall (where the liquid is superheated), and the dominant gas production mechanism
is evaporation of the thin liquid film at its free surface. Liquid droplets in the gas core subsequently
evaporate beyond the annular flow region to form a dispersed-drop flow region. Here, the fluid film on
the pipe wall has completely evaporated and no liquid is present. Finally, the remaining liquid droplets
in the gas core evaporate until only a single-phase vapour region is present.

The phenomenology described above has been greatly simplified, and there may be many other
intermediate flow regimes such as wispy-annular flow. The progression of regimes described above
represents the simplest scenario that can sensibly be addressé&tih@iey, 1987). The description
of intermediate regimes is frequently a somewhat subjective matter (seé\zégj, 1981 and the
literature is by no means unanimous. The presence of different flow regimes may also be influenced by
pipe orientation if the water inlet speed is sufficiently small. For example, in horizontal boiler pipes the
gas bubbles often migrate to the upper side of the pipe. For low inlet speeds, a stratified flow region may
also be present after the plug flow region.

In this study, we shall consider only the annular flow regime since this is the predominant regime
present in LMFBR boiler tubes (as well as in evaporators, condensation operations, natural gas pipelines
and steam-generating systems; 8éslis, 1969. At normal reactor operating conditions (e.g. pressures
of around 200 bar and hence a water saturation temperattiig-ef365°C), the flow pattern maps in
Bennettet al. (1965 suggest that annular flow is present in at least 80 to 90% of the two-phase flow
region. The annular flow region is responsible for most of the water/steam mass transfer in the pipe and
terminates at the so-called ‘dryout point’, where complete evaporation of the liquid film first occurs.

Careful control of the location of the dryout point is important if a reactor is to function properly.

At the dryout point, the pipe wall temperature increases sharply since the thermal conductivity of the
gas phase, which is now in direct contact with the wall, is much less than that of the liquid phase. The
determination of the position of the dryout point is not a trivial problem (Seker & Pearcel993

since, e.g. in the event that deposition of liquid drops occurs rapidly, the liquid film may reform, caus-
ing rewetting and a consequent drop in the temperature of the pipe wall. If the processes of dryout and
rewetting occur periodically, thermal stresses may be set up in the wall which could lead to cracking of
the pipe. A good understanding of dryout is therefore essential if one wishes to predict the lifetime of
steam-generating boiler pipes. Moreover, the dryout process imposes a limit on the amount of evapora-
tion that occurs in the pipes for a given value of the heat flux and is of great importance in the design
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of evaporators, steam boilers and other types of nuclear rea&arslioff, 1994 Collier & Thome
1994. Accordingly, we develop below a model to predict dryout point location.

The flow that we shall model falls into the general class of non-isothermal thin-film flows subject to
an external air flow, and much previous work has been carried out on such flows. In particular, previous
studies have considered evaporating thin filarélbachet al, 1988, the dryout of the microlayers
surrounding a non-isothermal bubbl&i(son et al, 1999, wind-driven rain drops on a car windscreen
(King & Tuck, 1993 and non-evaporating drops in a shear flawnfitrakopoulos & Higdon 1997
Spelt 2000, all of which are relevant to the model proposed below. Singular integral equation-based
models for such flows tend to lead to challenging numerical difficulties: the range of numerical methods
that may be required for various problems and the difficulties that might be present have also previously
been reviewedGuminatoet al., 2007).

2. Mathematical modelling

Our basic premise will be to assume that the annular two-phase flow in the tube is steady and 2D, the
flow in the thin liquid layer adjacent to the heated wall is governed by standard lubrication theory, the
evaporation of the liquid proceeds according to a classical Stefan-type condition and the interaction be-
tween the fast-flowing gas core and the wall layer may be described using classical thin aerofoil theory.
Parametric justification for these assumptions will be discussed below. The result of the model will be
a non-linear singular integro-differential equation (NSIDE) that will be studied using both asymptotic
and numerical techniques.

2.1 Liquid film region

In the liquid film, the flow is governed by the Navier—Stokes equations
1
g +@Vg=-2Vp+v¥ia

V.-q=0,

whereq = (u,v)" denotes the fluid velocity, denotes time ang, p andv = x/p denote, respec-
tively, the pressure, density and kinematic viscosity. For simplicity, we shall assume that aoth

are constant and ignore the effects of gravity. If required (e.g. to study the effects of inclined reactor
pipes), gravity may easily be incorporated into the pressure. To apply standard thin-layer theory, we
non-dimensionalize by setting = LX,y = €Ly, t = (L/U){,h = eLh,u = UG, » = eUs and

p = (uU L/h%) p, where an overbar denotes a non-dimensional variabkmdy denote distances
along and normal to the pipe wall, respectivdlydenotes the distance from the onset of annular flow

to the dryout pointhg denotes the fluid film thickness at some known point in the annular flow regime
(which will henceforth be designated= 0), x denotes the fluid dynamic viscosity,denotes a typical

flow speed in the film layer anddenotes the ratibp/L . Note that we do not know; indeed, one of the
primary purposes of this study is to determine it. We assume, however, that we know its order of mag-
nitude. Using typical operating values from Appendix A, we find that the ratio of a typical liquid layer
thickness {0.5 mm) to a typical tube radius{ mm) is small, thus justifying both a 2D approach to the
problem and the neglect of axisymmetric effects. The key non-dimensional parameters in the problem
are therefore and the reduced Reynolds number, which (using 5 m) are given, respectively, by

h 2 LUpe?

e=-2~10"% Ree ~ 4% 1073,
L U
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We therefore conclude that normal lubrication theory applies wherein there is a balance between viscous
and pressure gradient forces in the flow direction. Omitting some standard calculations for purposes of
brevity, we find that, in dimensionless variables,

PxY (Y — 2h) + 7Y, (2.1)

e}
I

P S S
xxy*(3 — §) + 5 Px¥hx — S7Y%, (2:2)

Dl NI

0=

where the boundary conditiois= » = 0 ony = 0 (no-slip and no-penetration) have been imposed,

and it has been assumed that the gas core flow exerts a shear sttegdJ /eL)7 at the free surface

h(x) = eLh(x) so thatly = 7 ony = h(x). The pressur@ is (as usual in lubrication theory) a function

of X alone and is assumed to be continuous across the free surface. If required, the influence of surface
tension could be accounted for. However, some simple dimensional analysis shows not only that such
effects are small but also that their inclusion significantly complicates the problem by increasing the
number of derivatives by two (though see the discussion at the end of Sadtedow).

Some further discussion of the shear stress term is warranted: we shall assume here for simplicity
thatz is a known constant. Many approximations to this quantity have previously been adopted in the
literature. If we set = CprOUOZO/Z, then in the current thin layer approximation the constant 0
is the average coefficient of friction (skin friction) of steam on the wet pipe wall. In addition to the
well-known lawscs ~ 1.328Re )~Y2 andcs ~ 0.074Re )~1/® for laminar and turbulent flows,
respectively (where Re= LU poo/1tg), many other correlations are available ép(see alsaing &

Tuck, 1993 Sadatomet al, 1993 Thwaites 1960. In the general case, a host of other factors such as
heat transfer, wall roughness and transition must be taken into account, but in all cases it appears that
the shear stress contributes to the leading-order equations and must therefore be retained.

We also note that we have ignored the very complicated question of whether the shear stress exerted
by gas core flow will cause waves on the surface of the annular film layer. If it does, the undercutting
of these waves will inevitably lead to droplet entrainment. Entrainment of this sort in annular two-phase
flows has been both theoretically and experimentally examined by a number of authors (S&eyerd.
et al, 2009. Though such a study is outside the scope of this paper, entrainment is clearly an important
effect.

2.2 Mass exchange at the free surface

At the vapour/liquid interfacg = h(x), a transfer of mass takes place as fluid in the liquid layer evapo-
rates to become steam. The details of this evaporative process must be determined as part of the solution
to the problem. We assume that the gas/liquid interface is at the saturation temp@&gattrieh is

slightly less than the pipe wall temperature. The liquid in the film layer is thus superheated (see, e.g.
Higuerg 1987 Kirillov et al, 19873b; Prosperetti & Plessgfl984) and must cool slightly before it

can evaporate. Previous studies have noted that evaporation is not the only way in which mass transfer
between the liquid film and the gas can take place. Both droplet deposition from the gas core and the
undercutting of any small waves present on the free surface and subsequent entrainment may add to or
subtract from evaporative mass exchange. Deposition, as one might expect, seems to be directly propor-
tional to the concentration of liquid droplets in the gas core [&sleer & Pearcgl 993 Whalley, 1977,

1987; mass entrainment is an altogether more complicated phenomenon. At the operating conditions
of interest, the results afollier (1972 suggest that neither entrainment nor deposition occurs rapidly.
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Therefore, we assume that the dryout phenomenon is dominated by evaporation of the liquid film and
ignore all other effects.

Denoting the mass per unit area per unit time transferred from the liquid to the dadgsrythat we
expectM > 0) and assuming that any mass escaping at the free surface does so in the direction of the
unit outward-pointing normdi, we have, at the free surface,

1>

M = pq.

and hence for steady flow

M = p(—uhy 4+ 0)(1+h2)~V2, (2.3)
In scaled variables2(3) becomes, to leading order,
m = —ahg + o, (2.4)

where the non-dimensional mass flow retéas been defined Byl = pUer. This scaling effectively

fixes the order of magnitude of the mass transfer required to produce dryou€lgrdistance. If the

mass transfer is an order of magnitude less than this dryout will never occur, and if it is greater, then no
region of annular flow can exist and the liquid film is instantly vapourized. Us2.&f &nd €.2) now

yields
1_ - 1 -
n=(=pgh®—=7h?
" Q” ZTL
or, in dimensional form,

P (i 12
M_ﬂ(Sth th) ) (2.5)

X

2.3 Gas core flow

In the fast-flowing gas core, we assume that the Reynolds number is high, and the flow is incompressible,
inviscid and irrotational. We also assume that the gas is a single-phase flow, thereby ignoring any en-
trained droplets. We denote variables in the gas using a subscript g and non-dimensionalize according to
X =LX y=LY, pg=pocUZ fig, h = eLh andg = LU, where a tilde denotes a non-dimensional
quantity,¢ is the velocity potential of the flow ang, andU,, denote, respectively, a typical speed and
density of the gas upstream of dryout and therefore far away from the perturbation caused by the liquid
film. A schematic diagram of the flow is shown in FE&).

We now proceed according to standard thin aerofoil theory (for further details se®ap.fyke
19795. We assume that the flow is essentially a perturbed plug flow and seek a velocity potential of the
form

R0 =%+ 5 [ HOME-07+ P
T J -0

where f (X) is a distribution of sources along tieaxis that has to be determined. We find that in order
to satisfy the linearized thin aerofoil conditigfy = ¢3hyz ony = 0, we must choosé (&) = h:(¢).
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FIG. 2. Schematic diagram of gas/liquid interface and free stream flow.

Proceeding along standard lines and using Bernoulli's equation to relate pressure to velocity in the gas

core flow, we find that, in dimensional form, the free stream pressure is given by

pscU th@)d
T 0 f — X

where, as usual, the bar denotes that the integral is of Cauchy principal value type and we have assumed
thath’(x) = 0 forx < 0.

2.4 Heat transfer

It now only remains to close the model by considering the heat transfer problem in the liquid layer.
We non-dimensionalize in the liquid film by setting= LX,y = ¢Ly,u = U0, » = ¢Uo» and

T = Ts+(Tw—Ts) T, WhereTs is the saturation temperature of the liquid in the film ddh typical pipe

wall temperature. In the absence of viscous dissipation (which may easily be shown to be negligible),
we therefore have, for steady flow,

- - k - 1.
UTg + 0Ty = Tex + = Tyy ) >
xt+oly LpUCp( %% + 2 yy)

wherek andc, are, respectively, the thermal conductivity and specific heat at constant pressure of the
liquid (which, for the purposes of this study, we assume are independent of temperature). Using the
parameter values in Appendix A (with a liquid layer thickness of 0.5 mm), we find that
k k
— ~ 107,
LpU Cpez LpUcp

and thus to leading ordélyy = 0 and the temperature is simply linear across the liquid layer. There
are now many ways to proceed. The wall is heated by a countercurrent flow of liquid metal, and though
complicated models may be proposed to couple this flow to the evaporation and the heating of the pipe
wall it is then only possible to make progress numerically. Here, we shall assume simply that the wall
temperature is maintained &};,. SinceT = Ts at the phase change boundary, this gives

T=1-

i<
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The change of phase at the liquid/vapour interface must now be accounted for. Assuming that the tem-
perature in the gas core remains constant and neglecting the surface entropy and vapour recoil terms
(which may easily be shown to be negligible), the standard Stefan condition (s€eyiigstein 1971)

asserts that

D
[kTyliguia = p 5 (Y —h(x)),

where the square brackets indicate the jump in the quantity that they entlsstie latent heat of
vapourization of the liquid (typically. ~ 600 kJ/kg) andD /Dt = 0/t + g - V is the usual material
derivative. Using the non-dimensional scalings introduced earlier, we find that, for steady flow,

_ 1 -
Ty liiquid= —5(0 — Uhyg),

wherey = KL(Ty — Ts)/(Up/lh(Z)) is a non-dimensional parameter that characterizes the transfer of
mass from the liquid film into the gas core. Note that since by assumption only evaporation (and not
condensation) is taking place and the liquid is superheated, necegsarity Also, the definition of;
predictably implies that the mass transfer increases with increasing thermal conductivity and amounts
of superheat but decreases with increasing liquid flow speed, liquid density and liquid latent heat.

From @2.4) we haverh = —(hyg + o, and thus

—m= ’Tl:)‘/ |quuid

so that
1
m= —=. 2.7
; (2.7)
In dimensional form,Z.7) becomes
. K(Tw—Ts)
M= — > 2.8
T (2.8)

This equation may be thought of as a mass transfer constitutive law that relates the interfacial mass flux
M to the temperature of the pipe wall and the other physical variables in the problem. For the operating
conditions of interest, the typical parameter values given in Appendix A imply that, for a fluid layer of
thickness 1 mm,

n~07(Tw—Ts)/K,

indicating that, with a few degrees of superheat in the liquid, dryout will, as assumed, occu® él)an
distance from the onset of the annular flow.

A similar simple heat transfer analysis may also be carried out when the wall heat flux (rather than
the wall temperature) is known. This gives= 7 wheres; = Lq/(1pUhg) andq denotes the wall heat
transfer so thakTy |y—o = —0g. Many other boundary conditions at the liquid metal/pipe wall interface
may also be modelled. For simplicity, however, we shall henceforth consider only the mass transfer
equation 2.7).
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2.5 Integral equation

It is now possible to close the model. Usir5), (2.6), (2.8) and the fact thap = pg at the liquid/
vapour interface, we conclude that, in dimensional variables,

[hj(pmuzo L hf(f)dg) _h_zr} _ 1k =Ty

3 T o £—X 2 Aph

This equation is more conveniently posed in terms of the non-dimensional variables defined earlier. We

find that
h3 (1 [Lhe®) h2 | 7
[93(2 og—xd@ri_zf TR 29)

X

whered = €3Lp,U2 /(uU) characterizes the relative importance of the pressure variations in the gas
core compared to those in the liquid layer. Using the values in Appendix A with a liquid layer thickness
of 1 mm, we find tha) ~ 1.5, indicating that the Cauchy integral term is a leading-order effect that
must be retained.

Some thought must be given both to the specification of boundary conditiorsJpaiid to how the
problem may be set up to determiheWe note thatZ.9) is a third-order NSIDE. There appears to be
virtually no rigourous existence and uniqueness theory in the literature for such equations, and it is not
immediately clear how many boundary conditions will be required to solve the equation and determine
L, the length to dryout. Proceeding on the basis, however, thathaarder singular integro-differential
equation normally requires+1 boundary conditions (one for each order and an ‘inversion’ condition—
see, e.gCuminatoet al, 2007, it seems sensible to impose the obvious boundary condition®.8n (
These are

h(O)=1, A1) =0, R0 =0 (2.10)

h3 (1 [Lh:) h2 _ B
|:9§(; 0 éT)‘(dC"Z )_(—E‘[ )_(:1—0. (211)

The first two of these conditions reflect the geometry of the problem, and the third insists that the
pressure is finite at the onset of annular flow. The final condittohlf expresses the fact that the mass
flux from the liquid film must be zero at the dryout point.

We shall see below that the boundary conditichd.@) and @.11) appear to be enough to specify
a unique solution toZ.9). We shall also see in Sectich6 that, as might be expected, an additional
boundary condition is required to determine the lengtto dryout. It is also worth noting tha2(9)
depends only upon the two non-dimensional parametgtsandi; /6.

and

2.6 Paradigm problem

Although the asymptotic and numerical solution ®9) with the boundary condition®(10 and €.11)

will be the subject of most of the remainder of this study, we pause at this stage to consider whether the
boundary conditions(10 and @.11) are appropriate for the problem and hdwnay be determined.

Since @.9) is awkward to work with, we shall make, for illustrative purposes, the (physically untenable)
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assumptions thak ~ 20z3xh=2 and; ~ n3hd and ignore theh®/3 term multiplying the singular
integral term in 2.9). The problem then becomes

1 [The@) ol

X

whererg andz; are constants. This paradigm problem, which will prove to be useful from a theoretical,
asymptotic and numerical point of view, may be solved in closed form. By integrating and using the
obvious analogous ‘mass flow’ condition t.11), we find that

1 _»:
(5 mdcf) —gX = (X = 1). (2.13)

T ng—)_(

Further rearranging, integrating, inverting using standard methods (seklesighelishvil, 1953, ap-
plying the boundary conditioh’(0) = 0 and finally integrating again and applyihg0) = 1 and
h(1) = 0, we thus have

_ 1 1 1
h(®) = Z5VX(T=%) [—16K>‘<2 + (245 — 8K) + 9—6} — Zsinl@2x—1) + 5 0<x<D,
T V3
(2.14)

whereK = (z3J +75)/2. It may easily be shown tha (14 is the unique solution td(12) that satisfies

the conditions Z.10 and the analogous condition t@.{1); the non-linear nature of2(9) makes it

unlikely, however, that it will ever be possible to establish uniqueness of the solution to the full problem.
We must now consider how to accomplish the major objective of this study and determine the length

L of the dryout region. Clearly another boundary condition is required. Many specifications of the

problem are possible, but we shall assume here that the prgggLissknown at the onset of annular

flow X = 0. This condition is equivalent to prescribing the total mass flux in the pipe: for a positive mass

flux we requirepgo < Poo. Thus,

as.

EpooUOZO ][1 ﬁf(é:)
T o ¢

and thus, for the paradigm problem,

2
NopooUse [32 } . (2.15)

—_ P70 |77 _g3 *+‘[*
16(po — pgo) Lz 0T 70

Since the quantity,, — pgo is positive, the dryout length predicted .19 is positive so long as;
is not too large. For later reference, we note that, as far as the behavi@ui 4fi¢ concerned,

1. Nearx = 0, thoughh(0) = 1 andh’(0) = 0, we haveh”(0) ~ (5z 5§ — w 7§ — 16)/(167 /X).
The solution is therefore non-monotone wht0+) > 1if 55 > 75/5+ 16/(5x).
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2. Nearx = 1, we haveh'(x) ~ (7 (7§ — ng) — 16)/(87 /1 — X), so thath(1—) will be negative
(and the solution will therefore be unphysicalyif > #g + 16/x.

3. We note that. increases as; increases and decreasesjgsncreases, both these results being
physically reasonable. When the heat transfer is so large #fjat-3z) + 32/z, the quantityl
becomes negative and the solution again breaks down.

Though an exact solution was available for the paradigm problem, it may also be solved numeri-
cally. For brevity, the details are not given here. Although there are many accurate and efficient meth-
ods for solving linear singular integro-differential equations (see fadersseret al,, 1980 Golberg
1979 Krenk, 1979, it is better to eschew such methods as they rely specifically on the linearity of
the equation—and2(9) is non-linear. In solving4.12), two matters immediately become clear: first,
regularization is crucial to deal with the conditionsxat= 0 andx = 1, and second, knowledge of
the asymptotic behaviour of the solution is extremely helpful for the development of good numerical
schemes. We now deal with these matters for the full equation.

3. Asymptotic analysis of the governing equation

Following the discussion of Sectich6, our first task is to determine the asymptotic behaviour of solu-
tions to the full problem
_h3(1 rth h?
72 (= QSCOPT) IRLEY
3\r7Jo =X 2 |
X X
with boundary conditions

h3 1 2
h(O)=1, h@®) =0, R () =0, [e‘h—( h:©) ) - h—fi| ;) (3.2)
X X=1

(3.1)

=

3 0 & —X 2

There is little interest in the asymptotic behaviour of solutions near to the goiat0, for herehyg

is zero and there are no numerical difficulties. (It is relatively easy to show, however, thatdol,
h(x) ~ 1 — 0(x%2).) At the dryout point, however is zero and, as suggested by the paradigm
problem, much more care is required. Here is evident that the f¢hnon the right-hand side of3(1)
must balance with the first term on the left-hand side of the equation. Assumiryfat A(1— X)P

asx — 1 (whereA is a positive constant and p < 1), we have

5 r3 13 1
n_ N|:0A (1;x) p( hg(é) )] (% ~ 1). (3.3)

A(l —x)P 3 &—X
Now consider

Lhe () Rhe (&) —pAl - )Pt
| = 5_Xd§ /5_Xd§ ][ng (X~ 1),

where the constarR < 1is chosen so that4 R « 1 but 1— x <« 1 — R. Rearranging, we find that

dé—/)

, /Rﬁg+f\p(1—5>p—1d ][1Ap(1—f)p‘1
~ — é_ _—
0 —X 0 &—X
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and, on setting + ¢ = (1 — X)u in the principal value integral, we obtain

RRK. A _ =nyp-1 _ oo p—-1 oo p—-1
| ~/ het APA O 4 Ap(1— %Pt [][ ! du—/ ! du]
0 0 X

E—X 1-u

Now using the standard result

[} up—l
][ du=zcotpr (O<p<1l),
o l-u

we conclude that, provideﬂg is well behaved away frork = 1 (which is, in any case, a physically
sensible requirement), then, to leading order,

| ~—Aprcotpr(l—x)P1 (x ~1).
Equation 8.3) now yieldsp = 3/5 and thus, near the dryout poixt= 1, we have
h~ Al —x)%5, (3.4)

where

_ /_125tan37/5)7\ § 7\ Y5
A:(—_) ~2.49(:) .
40 7

Returning for a moment to dimensional variables, we find thatxferL,

/ - K(Tw — Ts)v e —2/5
h'(L) ~-I (W) (L —x) , (3.5)

wherel” ~ 3/2. The dependence of the gradient on the problem parameters is therefore as one might
expect, for the length of the fluid region presumably increases with increagiihg greater the latent
heat the harder it is to evaporate the fluid) a:agufo (the free stream has more power), but decreases
with increasingk(Ty, — Ts) (more wall heating) and (the fluid is more viscous and is therefore less
inclined to flow). All these observations are correctly predicted®§) (since ad. increases we expect
the gradient near ta = L to decrease.

It is worth pointing out that, unlike in some previous studies (see, K8y & Tuck, 1993, the
infinite gradient of the solution a = 1 is essentially a consequence of the evaporation model and
cannot be removed simply by including the effects of surface tension. Specifically, inclusion of this
term would lead to an asymptotic balance betw8émhzsz)xz/3 (WhereS = €35 /(uU) ands (N/m)
is the fluid surface tension) angth nearx = 1. This givesh ~ (1 — x)*/® and thus slightly reduces
the strength of (but does not eliminate) the slope singularity. Note also that for the case of constant wall
heat flux, it is easy to show thé is still infinite at the dryout point. We therefore continue to ignore
the effects of surface tension since, in any case, using the values in Appendix A, wé kate

4. Problem reformulation and regularization

To allow a numerical scheme to be implement&dl)(and its associated boundary conditioBL( must
be both reformulated and regularized. Integrating and using the mass flux condikos dt, before
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rearranging and integrating once again, we have

1hé(§) 3 [* 1
SRt TR - A (h3(5) T)ds)dﬁcz' “

We now define
o 31—_ X 1 3;7/ 1 1 1
iy =35 | TER (h3<f> ¢ o ) 5

so that ¢.1) may be rewritten as

1 (TR0
éf —
By using standard inversion formulae for Cauchy integral equations (seéflesghelishvili 1953,
(4.2) may be inverted to give

T = F(X.A(X) + Cz. (4.2)

hig (%) = — ][1 Vel - f F(, h(é‘))
e m/x(l—x E—X
][1 c(1- é d5+ Cs
7r«/X(1 —X) VXA =X)
Now using the fact that
1 —
]lo %di:—m’(+% 0<% <1

and imposing the boundary conditibr(0) = 0, we find that

_— 1mF(§,h(5))
he (0 =~ m/—x(l—x 7[ &—X &«
L_-2% L ET=9FE h©) &+ 2%Cs
VXA =% Jo & VXA =%)

Integrating once again, using the boundary condifi¢®) = 1 and changing the order of integration,
we find that

_ 1
o= [ (e hena=a [ g ) o
1
+_\/X(17/ Fa— éF(f,h(f))

+2C3 (—\/2(1 X +3 sin‘1(2>‘< -1+ %) + 1
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Using the standard integral

S ——X X — 2/EA = O)J/X([A =X
6(1—5)/0 . ‘5 X+ 26X —2/EA-E)V/X(1—-X)

&—X

ds
—9S)/S(1—59) -

and imposing the remaining boundary conditigii) = 0, we obtainCz = —1/z so that

—¢ =X+ 22X - 2J/{(1 - HVX(I - X)

E-x «

1
Mmz—%A F @& hE)In

1
2w [ TR 2 rao - Denex- v+ )

From a numerical point of view, recasting the problem in this way is advantageous as there are now
no singular integrals or derivatives in the equation. The problem may now be regularized by using the
asymptotic information that was gathered in Sectidoy settingh(X) = H(y), wherey®3 = 1 — x

We obtain the equation

3

_ 5 1__ __ _ _
Pﬂ%=——iéé”%«1—5BLH@D

&3 4 §°/3 — 2253953 1 2,/85/3(1 - £53) /YR - §59) |
n E5/3 y5/3 d

10 [oosq_yos [ SRR HEWVERA= ) o
+3/vRa y/)/

1— (:5/3

+3JWBG—VW%—1sm4u—2WBy+u2<0<y<1x (4.3)
T T

where

1723 257 1 z2/3 < g3\
F(y,H( ))—2‘9 g H(é:)d(: 39 g H3(E)(A H(g)ds)df

and, of course, automaticall (0) = 0 andH (1) = 1.

5. Numerical method and results

We now present a numerical procedure for the solution of the final regularized probl@nrst, we
divide the interval [01] into n equally spaced subintervalg [ y; 1], where 1< i < nandy; = 0,
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Yn+1 = 1. Proceeding by collocation, we discretiZe3j to obtain

SLp— Z/ E2RE (1 - B9), A@)

5:5/3_’_)7'5 24‘:5/3y5/3+2 55/3(1 55/3 y5/3(1 5/3

xIn E5/3 —5/3

/_5/3(1 —5/3)2/”1*152/3“(1 65/3) H(©)Ve> 31 - 4‘5/3

55/3

2 1 1
+= v -v"3) - sm—1(1 2‘5/3)+§ (i=23,...,n). (5.1)

To approximate the functioR, we write

o 1 S2/3 1 g2/3 s 12/3
=L - - ——dt )ds, ,
T e C/ e C”/: H3(9) (/0 H () t) ) oo

whereC, = 3¢ andC, = 2.

For convenience we henceforth omit the overbars and use a linear approximatlérof@r each
subinterval §, & +1] usingH (&) =~ a ¢ + by, wheregg = H'+§_H' b = H —&a, H =~ H() and
d¢ = &4+1—¢&. In (5.2, we denote the first integral b (¢) and the second (double integral) By&).
Foré e [&), &j4a], with 1 < j < n, the integralM is approximated by

G 23 N rdar 23
M(¢) =~ ds + ds
© / ajs + b; k=Zj—:|-1 & as+ by

= [W(§j+1a aj ’ b]) - g/(;c’ aj ’ bJ )] + Z (yl(é:k-‘rls ak, bk) - g/(ﬁfk, a, bk)) (53)
k=j+1

If j =n,then 6.3 still holds, but the summation term is ignored. Here and henceforth the fund&ions
and® (which are integrals that can be calculated in closed form) are given by

5 y X2/3 q 5 y X2/3
v = @ —
(rab = [ o eab = [C o

Foré e [&), &j+4], the functionN is approximated for X j < n by

&1 s2/3 s t2/3 n Skt1 s2/3 t2/3
N(¢) =~ d
o= (aj5+bj)3(/o HO )S+ > /. (aks+bk>3(/o HO )

k:]+l
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/ . _1( ( bi) — ¥ ( bx))
- ————— | D (P (k1. B ) — ¥ (X, A, bk
. )3

+¥(s,aj, bj) — P(xj,a;,bj) [ds

1 g2/3 [k L

" Z / (as + by)3 Z(?’(Xm,al b)) —¥(x,a, b))

k= J+1

+¥(s, a, bk) — ¥ (X«, a, b) | ds
-1
D Ok, Ak, b) — ¥ (%, &, bK) | (D41, 8, by) — (&, @y, b))

k=1

G 23 |
+ — = _(¥(s,aj,b) - ¥, aj, S
L Gty - 7e.a.by)

n k—1
+ > (Z Y1 a,b) =¥ (%, a, bl)) (D (X1, Bk, bK) — P (X, 8k, b))

k=j+1 \I=1
> /é (5 A b — ¥ (X, &k B (5.4)
+ —ylsaaka k _Byxkaak’ k S, .
Ciala @s+bo?

where once again the relevant summation terms should be ignoyed if.

5.1 Numerical results

The expression3( 1) may now be used to define a direct iteration method to s@ha. (If we start the
iterative process by assuming thdtis linear, then numerical experiments quickly suggest that con-
vergence is easily obtained, though because of the non-linear nature of the problem it appears unlikely
that rigourous convergence results will be available. Notwithstanding this, for each of the illustrative
numerical results that are discussed below, all the usual tests were performed to ensure that the final
solution was insensitive to the choice of initial approximation, the solution converged in a satisfactory
manner as the number of grid points was increased and the known asymptotic properties of the solution
were faithfully reproduced (the details are omitted for brevity).

We note that the numerical solution depends only upon the parantztarsdC,,. Numerical exper-
iments show that it is not possible to compute a numerical solution to the problem for all parameter pairs
(C;, C)). The figures below show some representative results and how the numerical solution varies for
various values o€, andC,,.

In Fig. 3, a fixed value oC; = 0.5 was used and solutions were computed for various valu€s.of
We note that a similar conclusion to that highlighted in Secfidifor the paradigm problem applies,
namely that as the value @, increases, the solution becomes non-monotone k) > 1.
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FiG. 3. Numerical solution of4.3) (plots ofA(%X) vs.X) with C; = 0.5 for various values oty

=

--C=5 H
T

— C1:=0'5

* Cr=0'0005 I

0.8} NS

| .
0.6} .
05} N
04} '

0.3

0.2}

0.1}

0 1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09 1

FiG. 4. Numerical solution of4.3) (plots ofA(X) vs.X) with Cy = 0.5 for various values o€ .

In Fig. 4, a fixed value ofC, = 0.5 was used and solutions were computed for various values of
C.. AsC; increases, it is clear that the general shape of solutions changes. For larger v&lugs isf
not possible to obtain a numerical solution. The scheme does not converge, and all attempts to run with
different parameters, proceed by continuation from ‘close by’ solutions and weaken the convergence
criteria fail. This suggests (but of course does not prove) that for these valGgsloé problem has no
solution, and it is thus possible that the full problem shares with the paradigm problem the characteristic
that the solution becomes negative (and therefore unphysical) neat tb.
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TABLE 1 Relationship between dryout
length L and parameter Cfor a fixed

value of G,

C. C, L
0.0001 1 1.242
0.0005 1 1.242
0.001 1 1.243
0.005 1 1.244
0.01 1 1.245
0.1 1 1.275
1 1 1.565
2 1 1.884
4 1 2.493
10 1 4.069
20 1 6.040
30 1 7.671

5.2 Determination of L

In this section, we address the major objective of this study, namely the determination of the dryout
lengthL, and we also investigate holvdepends on the paramet&s andC,,. L may be determined
in an identical fashion to that employed in Sectibf. We find that

hopooUZ, [ he(&)
L=— d 5.5
(Poo — Pgo)7 ][0 ¢ - 59
so that
hopooU2, (2 2 (L JEA=OF(E, Q)
_ Mopocbee (£, < as ). 5.6
(poo—pgo)(fr +7r7{> < gC) R

Values ofL were determined using (6) for the parameter values given in Appendix A, g, = 171
kg/m®, Uso = 12 m/s,Hy = 1, pss = 200 x 10° Pa andpgo = 1999 x 10° Pa.

Table 1 below shows the relationship between the length to the dryout joerid C, when the
parameteC, is set equal to 1. As might be expected from the results of4&ign increase i€, results
in a decrease in the thickness of the liquid film. As a consequence we would expect that an increase in
the traction parametertends slowly but gradually to increase the liquid layer and hence the position of
the dryout point. This tendency is confirmed by the results in Table

Table 2 below shows the relationship between the length to the dryout poantd C,, when the
parameteC; is set equal to 1. It can be inferred from TaBlthat, as we would expect, f@, <« 1 the
mass transfef is small and dryout is delayed. By contrast, wi@n>>> 1 the mass transfer is so high
that the liquid film cannot be established and dryout occurs immediately, leading to unphysical results.

6. Discussion and conclusions

In this study, we have proposed a model to determine the flow in an LMFBR boiler pipe. The key
physical item of interest, namely the length to the dryout point, emerges from the model as a result
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TABLE 2 Relationship between dryout
length L and parameter Cfor a fixed

value of G

C, C, L

1 0.0001 2.005
1 0.0005 2.004
1 0.001 2.004
1 0.005 2.001
1 0.01 1.996
1 0.1 1.934
1 1 1.565
1 2 1.293
1 4 0.882
1 10 0.025
1 20 —-1.027
1 30 —-1.763

of the flow calculation. The numerical results that are given in Seéisnggest that the values that
are calculated fot are physically reasonable. Interestingly, the results also exhibit remarkably similar
trends as the results from a much more artificial (but much easier) paradigm problem.

The work that has been carried out also has some purely numerical implications. Equations such as
(3.1) still present a numerical challenge. Though similar equations have been solved in a few previous
studies (see, e.g-itt & Wilmott, 1994 Fitt & Pope 2001), the solution of such problems is by no
means yet routine. Once again, the results of this study emphasize that careful asymptotic analysis and
regularization are crucial for numerical success.

Itis worth noting that we could have taken a completely different approach to the problem by treating
it as a classical partial differential equation problem rather than by choosing, as we did, to formulate
the free boundary problem in terms of an integro-differential equation. The advantage of our approach
is that it allows the entire problem to be reduced to a single (albeit complicated) equation. Once this
is solved, everything is known. Though it would clearly have been possible to use a purely numerical
approach in solving the governing partial differential equations, the free boundary would have required
careful treatment.

Of course, some major assumptions have been made in the model presented above. One might argue
that, for practical purposes, it may be simpler just to measure the dryout point, but the safety constraints
of an LMFBR make this a daunting experimental task. The model presented above not only provides key
information about how changes in the upstream pipe flow might be expected to influence the position of
the dryout point but also describes how the key physical parameters in the problem influence the position
of the dryout point. It also identifies the (relatively small) number of non-dimensional parameters that
determine the flow.

It should also be noted that the model presented above is a steady version of an unsteady problem.
One might wonder whether the full unsteady problem has stable solutions. Though this matter was
partially addressed iiviphaka (2000, it is clear that more work still needs to be carried out on the
time-dependent problem.

Finally, it is worth pointing out that nuclear power is rapidly becoming fashionable again. Though
the Douneray LMFBR was shut down in 1994 (along with the rest of the UK's LMFBR programme), it
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seems distinctly possible that, at some time in the not too distant future, fast breeder reactors may once
again be operating in the UK to provide a commercial source of power.
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Appendix A. Nomenclature and boiler tube typical values

The values below apply to typical operating conditions in an LMFBR boiler and are takemvfpbraka
(2000-‘Mp’, Irvine & Hartnett(1979-1H" and Schmidt(1969-'Sc’. It is worth noting that, as far as
parameter values are concerned, the literature is not unanimous and different sources may give different
values.

a Typical tube radius<7 mm) (Mp)

ho  Typical thickness of wall liquid layer€0.1-1 mm) (Mp)

L Length to dryout point{5 m) (Mp)

L;  Typical heated length of boiler pipe-6.1 m) (Mp)

g Acceleration due to gravity~<9.8 m/€)

€ Small parameteing/L (~10~%)

Cp  Typical liquid specific heat{15.646 kJ/kg/K at 180 bar, 633 K) (Sc)

k Typical liquid thermal conductivity0.412 W/m/K at 200 bar, 633 K) (Sc)

A Typical latent heat of vapourization of water§07 kJ/kg at 198 bar, 638 K) (IH)
q Typical heat flux from liquid sodium~595 W/n?) (Mp)

7 Typical dynamic viscosity of liquid{6.68 x 10~ Ns/n? at 200 bar, 633 K) (Sc)
ig  Typical dynamic viscosity of vapour.96 x 10~° Ns/n? at 200 bar, 633 K) (Sc)
p Typical density of liquid £498 kg/n? at 198 bar, 638 K) (IH)

peo  Typical density of gas core flow upstream of dryoutl(71 kg/n® at 200 bar) (Sc)
o Surface tension (N/m)¢0.002 at 633 K) (Sc)

M Dimensional mass flow from liquid to gas core (kg/$m

m Non-dimensional mass flow from liquid to gas
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P Typical pressure in the gas core far upstream of drye@0Q bar) (Mp)
U Typical gas core velocity~12 m/s) (Mp)

U Typical liquid velocity ¢~0.01 m/s) (Mp)

Ts  Typical saturation temperature-638.86 K at 200 bar) (IH)

Tw  Typical wall temperature~640 K) (Mp)
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