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Abstract 

A finite element numerical study has been carried out on the isothermal flow of power 

law fluids in lid driven cavities with axial throughflow. The effects of the tangential 

flow Reynolds number (ReU), axial flow Reynolds number (ReW), cavity aspect ratio 

and shear thinning property of the fluids on tangential and axial velocity distributions 

and the frictional pressure drop are studied. Where comparison is possible, very good 

agreements is found between current numerical results and published asymptotic and 

numerical results. For shear thinning materials in long thin cavities in the tangential 

flow dominated flow regime, the numerical results show that the frictional pressure 

drop lies between two extreme conditions, namely the results for duct flow and 

analytical results from lubrication theory. For shear thinning materials in a lid driven 

cavity, the interaction between the tangential flow and axial flow is very complex 

because the flow is dependent on the flow Reynolds numbers and the ratio of the 

average axial velocity and the lid velocity. For both Newtonian and shear thinning 
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fluids the axial velocity peak is shifted and the frictional pressure drop is increased 

with increasing tangential flow Reynolds number. The results are highly relevant to 

industrial devices such as screw extruders and scraped surface heat exchangers. 

Keywords: Numerical Modelling, Fluid Mechanics, Processing, Non-Newtonian 

Fluid, Lid Driven Cavity, Axial Flow 

 

Nomenclature 

A cavity aspect ratio H/L (-) 

km  consistency index (Pa-sm) 

c1, c2 constants in equation (5) 

f friction factor (-) 

H cavity height (m) 

I2 second invariant of the rate of deformation tensor (/s) 

L lid side cavity length (m) 

m shear thinning or power law index (-) 

p pressure (N/m2) 

-pz axial pressure gradient (N/m3) 

ReU U-Reynolds number ReU = ρUL/µF  

ReW W-Reynolds number ReU = ρWL/µF  

Sv, Sw convergence criteria (-) 

U lid velocity (m/s) 

u x-component of velocity (m/s) 

V tangential velocity (m/s) 

v y-component of velocity (m/s) 

W average axial velocity (m/s) 
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w z-component of velocity (m/s) 

x, y, z Cartesian coordinates (m) 

α velocity ratio or Reynolds number ratio (-) 

γ  shear rate (/s) 

µ absolute viscosity  (Nm/s2) 

µF characteristic viscosity (Nm/s2) 

 

1. Introduction 

Fluid flow in lid driven cavities (Shanker and Deshpande (2000)) is an important 

simplified model of direct relevance to many complex practical flow problems, such 

as motion in thin film coaters for the production of tape and photographic film (Aidun 

et al. (1991), flow in screw extruders for polymer and food processing (Griffith 

(1962)) and scraped surface heat exchangers for the processing of highly viscous food 

materials (Harrod (1991)). Most industrial process operations of this sort are three-

dimensional low Reynolds number flows that are dominated by the tangential flow. 

The fact that such processes typically involve non-Newtonian materials means that 

simulations of the full problem still poses serious challenges. Early studies on cavity 

flow with Newtonian fluids were reported by Burggraf (1966), Pan and Acrivos 

(1967) and Nallasamy and Prasad (1977). With improvements in computer power and 

numerical codes, increasing research activity is taking place on lid driven cavities 

with non-Newtonian materials, including studies on viscoelastic fluids (Grillet et al. 

(1999)), Bingham fluids (Mitsoulis and Zisis (2001)) and power law fluids (Marton 

(1969)).  
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Using finite element methods, Sun et al. (2003a, 2003b) studied flow and forced 

convection heat transfer with viscous dissipation in scraped surface heat exchangers 

with power law shear thinning and heat thinning fluids. A typical scraped surface heat 

exchanger comprises a central shaft rotating inside a narrow annulus. The outer 

surface of the annulus is scraped by blades attached to the rotating shaft; the blades 

are often staged along the axis of the shaft. In steady-state 2D lid driven cavities (Sun 

et al 2003a), computed finite element results showed that the velocity and temperature 

distributions are very different for power law and Newtonian fluids. Close to the 

singularity corners where the cavity lid and sidewalls meet, the local viscosity and 

viscous dissipation are both reduced with shear thinning fluids. As a result, the local 

fluid temperature and the heat flux across the lid are both lower for shear thinning 

fluids than in the corresponding Newtonian fluid. The computations were further 

extended to study steady state 2D flow in scraped surface heat exchangers with closed 

and cutaway blades (Sun et al 2003b). These results showed that heat transfer across 

the outer cylinder was greatly affected by the characteristic viscosity and the variation 

in the local viscosity due to the shear and heat thinning.  

 

As numerical studies of the full 3D problem with non-Newtonian fluids are still out of 

reach for most applications it comes as no surprise that existing numerical results are 

largely limited to simplified steady 2D flows in which the effects of axial flow are 

neglected.  For non-Newtonian fluids the tangential and the axial flows are highly 

coupled due to their shear dependent rheology. It is important to know the 

consequences of axial flux and, in particular, how the tangential (cross) flow interacts 

with the axial flow and how much it affects the power required to pump the fluid. Fitt 

and Please (2001) provided an asymptotic analysis of the 3D isothermal flow of 
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power law fluids in lid driven cavities. Lubrication theory was used to study flow in 

scraped surface heat exchangers with small annular-gap/perimeter ratios. Very useful 

predictions were made of velocity profiles and the relation between the axial mass 

flux and frictional pressure drop; also, the optimal energy distribution between 

rotating and pumping was determined. In an analysis of a related flow problem, 

Karwe and Jaluria (1990) studied fluid flow and heat transfer in a single screw 

extruder using finite difference techniques. Creeping flow was assumed in both the 

axial and the barrel moving directions and the effect of the screw was neglected by 

assuming a long, shallow channel. The bulk temperature and Nusselt number along 

the screw helix were obtained for Newtonian and power law fluids with a shear 

thinning index of 0.5. 

 

The work reported here extends our previous finite element numerical studies to 

include the effects of axial flow. The flow behaviour in scraped surface heat 

exchangers provides the context. By assuming isothermal fully developed laminar 

flow in the axial direction, the interaction between the axial flow and the tangential 

flow in lid driven cavities is studied. For fully developed laminar flow with 

Newtonian fluids, the secondary flow, i.e. the tangential flow, decouples from the 

axial flow. The tangential flow field may be determined first, and then the axial flow 

field found separately. For non-Newtonian power law fluids the tangential flow and 

the axial flow fields cannot be determined separately. A simple numerical procedure 

is used to compute the tangential and axial velocity components and the frictional 

pressure gradient. The computations aim to extend our basic understanding of power 

law fluids in lid driven cavities with axial flow. The selection of parameters is 

relevant to industrial applications in scraped surface heat exchangers.   
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2. The differential equations and numerical procedure 

2.1. Governing equations 

A rectangular coordinate system is used with its origin at the bottom left hand corner 

of the cavity (Fig. 1a). The x- and y-axes are in the plane of the tangential flow and 

the z-axis is in the direction of the axial flow. The velocity components are denoted 

by u, v and w respectively. The lid, of length L, is located at the top of the cavity 

(y=H) and moves at velocity U in the positive x direction and the y-axis is 

perpendicular to the lid. The cavity aspect ratio is denoted by A=H/L. During the 

computations, to maintain a low Reynolds number at all length scales concerned, the 

longer wall of the cavity (i.e. the lid length L) is used as the non-dimensional length 

scale. This should be borne in mind when interpreting results where the dominant 

velocity gradient is along the y axis. The velocity scales are the lid velocity U for the 

tangential velocity components u and v, and the average axial velocity W for the axial 

velocity component w. The scale for pressure is LUFµ . The characteristic viscosity 

Fµ  is taken to be the viscosity given at a shear rate 
2
1
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L
W

L
Uγ . Again, for 

cases where L > H and the gradients in the y- direction dominate those in the x- 

direction this scaling may have to be altered, though since our results are solely 

numerical this should not matter in the present study. 

 

We consider isothermal, laminar, steady flows of an incompressible viscous fluid with 

fully developed axial flow in an infinitely long cavity. It is reasonable to assume that 

all the velocity components are functions of x and y only, and, from the w momentum 
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equation, the axial pressure gradient is therefore also independent of z. At any cross 

section in the x-y plane the non-dimensional governing equations are therefore: 

 

The continuity equation 
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w-momentum equation 
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where * denotes that the variables are in their non-dimensional form, 
F

U
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ρ

=  is 

the tangential Reynolds number, 
F
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WLRe
µ
ρ

=  is the axial flow Reynolds number, 

(equivalent to a non-dimensional axial volume flux), and
2W
Lpf z
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dimensional axial pressure gradient or friction factor. The frictional pressure gradient 

is defined as 
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The velocity ratio or Reynolds number ratio is 
U

W

Re
Re

U
W

==α . As the tangential flow 

is dominant in many industrial applications such as SSHEs and screw extruders, 

values of the velocity ratio less than one were used in the computations. 

 

The boundary conditions in the plane of the tangential flow are 

 

At the lid  0,1 *** === wvu    

At the walls  0*** === wvu . 

 

A generalized shear thinning power law viscosity 2/)1(
2

−= m
m Ikµ  is used (Bird et al 

1987). Here km denotes the consistency index (Pa-sm), which varies with the material. 

I2 is the second invariant of the shear rate tensor. Non-dimensionalized by the 

characteristic viscosity 
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The constants c1 and c2 are included to ensure that the viscosity has a nonzero finite 

value throughout the computational domain. Values of c1=0.000001 and c2=0.0001 

were selected; numerical experiments show that this modification has an insignificant 

effect on the bulk viscosity whist giving physically reasonable viscosity values. The 
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shear-thinning index m varies with the material: m=l corresponds to a Newtonian 

fluid, while for shear thinning non-Newtonian fluids m<1 (a typical value of m for 

food materials such as fruit jam, peanut butter etc. is 0.33). Unless otherwise 

specified, the results presented below are non-dimensional values with the * omitted 

for brevity.  

 

2.2. Numerical formulation and solution procedure 

The non-dimensional partial differential equations are solved numerically with the 

commercial finite element partial differential equation solver FastfloTM (2000) using 

the Galerkin form of the weighted residual finite element formulation. FastfloTM is not 

a “black box” CFD package. The selected numerical methods have to be implemented 

through user programming. A detailed discussion of the numerical formulation may 

be found in Sun et al. (2003a). To solve for the tangential flow field, the augmented 

Lagrangian method (Sun et al (2003a), Fastflo (2000)) is used. The basic computer 

code implemented here is the same as that used for the previous case (Sun et al 2003a) 

except that the viscosity is now also a function of axial shear rate. The Newton-

Raphson method is used to compute the axial velocity w and frictional pressure 

gradient fReW. The solution algorithm may be summarised as follows: 

1. Set the flow parameters: lid velocity, average axial velocity, power law index 

and number of iterations for Loop 1 and Loop2 etc. 

2. Assume an initial axial and tangential velocity distribution  

3. (Loop 1) Compute the tangential velocity components u(x, y), v(x, y) and the 

pressure p(x, y) in a 2D cavity 

a. Calculate the shear dependent viscosity 
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b. Solve the continuity equation and u, v momentum equations along with 

the given velocity boundary conditions, using the augmented 

Lagrangian method, to obtain the velocity components (u and v) and 

the pressure p 

4. (Loop 2): Calculate the axial velocity and frictional pressure gradient using the 

Newton-Raphson method 

a. Assume an initial frictional pressure gradient distribution 

b. Update the viscosity from the known velocity components  

c. Solve the w-momentum equation along with the given boundary 

conditions  

d. Calculate the frictional pressure gradient distribution from the updated 

w-velocity  

e. Update the frictional pressure gradient distribution by multiplying by a 

factor i.e. the ratio between the initial value of average axial velocity 

and the calculated value 

f. Repeat steps (b), (c), (d) and (e) to obtain the axial velocity and 

frictional pressure gradient 

5. (Loop 3): Repeat steps (3) and (4) until all the u, v and w velocities have 

converged 

6. Calculate the streamlines (see section 3.3) for tangential flow from the u and v 

velocity components and the average frictional pressure gradient. 

 

Numerical experiments show that the results and the convergence are not very 

sensitive to the initial distributions of the axial and tangential velocity. The initial 

distributions of the axial and tangential velocity are assumed to be uniform in the bulk 
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with values of 1 and 0, respectively. The initial distribution of the frictional pressure 

gradient in the bulk is also assumed to be uniform with a value of 0.18*m. where m is 

the power law index.  

 

As mentioned earlier, for power law fluids the u, v and w momentum equations are 

coupled so that it is unwise to devote too much time to achieve convergence of the u 

and v velocity components in Loop 1 when these are based on a rough value of the w 

velocity component. So Loop 1 and 2 are set to a limited number of iterations to 

ensure that the u, v and w velocities converge gradually together. Loop 3 stops if the 

relative difference between successive solutions for u, v and w satisfies the 

convergence criteria. 

Vnnn SVVV <− ∑∑ −1        (6) 

wnnn Swww <− ∑∑ −1        (7) 

 

where Vn and Vn-1 are the tangential velocities (from u and v components) given by 

consecutive iterations and wn and wn-1 are values of axial velocity in consecutive 

iterations. Numerical experiments show that for decreasing m the values of SV and Sw 

tend to increase (the minimum m attempted with this computation is 0.2). Their 

values are also dependent on the cavity aspect ratio. Here different values are set for 

the convergence criteria with different power law indices: 

For large power law indices (m>=0.4)  000001.0,000001.0 == wV SS  

and for small power law indices (m<0.4)     00001.0,0001.0 == wV SS  

 

The sensitivity of the final value of the frictional pressure gradient to the mesh size 

and the convergence criteria was carefully checked. The numerical accuracy was 
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assessed by comparing the calculations with available analytical solutions and, in their 

absence, with values determined by using Richardson extrapolation (Roache 1997). 

Richardson extrapolation is applied to the values of the frictional pressure gradient for 

a group of four selected grids to obtain a final value of even higher accuracy than that 

for the finest grid. It is found that a mesh concentrated at the cavity surfaces and the 

singularity corners as in Sun et al. (2003a) provides satisfactory results. The final 

mesh contains 3470 6-noded triangular elements and is concentrated at all surfaces 

and also at the singularity corners (Fig. 1b).  This mesh provides sufficient resolution 

at the centre and in the velocity boundary layer for the Reynolds numbers (<100) 

covered in this computation. Convergence was normally achieved within 15 iterations 

for all of the power law indices studied.  

 

3. Results and discussion 

3.1. Effects of axial flow and aspect ratio on pressure gradient in axial direction at 

ReU=1 

For comparison, the current numerical results are plotted against published results for 

flow in an infinitely long cavity by Fitt and Please (2001) and for duct flow by 

Hartnett and Kostic (1989). These previous results are briefly discussed in the 

appendix. From Fig. 2 to Fig. 5, unless otherwise specified, the solid lines represent 

the analytical results from lubrication theory by Fitt and Please (2001) (equation 

(A2)), the dotted lines are the duct flow results by Hartnett and Kostic (1989) 

(equation (A4)) and symbols denote the numerical results.  

For a cavity aspect ratio A=0.1, the friction factor f is plotted in Fig. 2 as a function of 

ReW for various values of m. It shows that for a shear thinning fluid, the friction factor 

(the non-dimensional pressure gradient in the axial direction) is lower and less 
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sensitive to ReW (the non-dimensional axial volume flux) than for a Newtonian fluid. 

Very good agreement is found between current numerical results (symbols) and the 

results from Fitt and Please (2001) (solid lines). The results are also qualitatively 

consistent with isothermal results for flow in screw extruders found by Griffith 

(1962). Figs. 3 show the effect of axial flow on the frictional pressure gradient fReW 

as a function of m for A=0.05, 0.1 and 0.25, respectively (Fig. 3b shows the same set 

of data as in Fig. 2). It is seen that for Newtonian fluids, the numerical results are very 

close to the duct flow results for all the velocity ratios and aspect ratios studied. For 

shear thinning fluids, the computed frictional pressure gradient is always higher in the 

lid driven cavity than in duct flow. At low Reynolds numbers, with Newtonian fluids 

the tangential flow has little effect on the frictional pressure gradient while for shear 

thinning fluids i.e. m<1 the frictional pressure gradient increases with the tangential 

flow. The magnitude of the increase depends on the velocity ratio. For ReU=1 at a 

small aspect ratio (A=0.05) and small velocity ratio (α<0.2), very good agreement is 

found between the numerical results and the analytical results from lubrication theory. 

For strongly shear thinning fluids at high velocity ratio (α>0.2), there is an increased 

difference between the numerical results and the lubrication results as seen from Fig 

3, indicating that the additional shear thinning effect of the axial velocity component 

on the local viscosity cannot be neglected under these conditions. These figures also 

show that for Newtonian fluids at high aspect ratio (A>0.1) the effect of the sidewalls 

cannot be neglected. Interestingly, there is a set of intersection points at a certain 

value of power law index m where the results from lubrication theory by Fitt and 

Please (2001) and the numerical calculations are the same. This is caused by the 

combined effects from the axial flow on local viscosity and from the cavity sidewalls: 

increasing the aspect ratio increases the effect of side walls so that the dominant effect 
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of the cavity lid decreases; thus the actual frictional pressure gradient is higher than 

that predicted by the lubrication theory results. The viscosity decreases with increased 

shear thinning (i.e. as m reduces) and decreases further when axial flow is taken into 

account; thus the actual frictional pressure gradient is lower than the lubrication 

results at smaller m. 

 

3.2. Effects of Reynolds numbers, velocity ratio and shear thinning index on frictional 

pressure drop and velocity profile for A=0.25 

For ReW=1, the effects of tangential flow Reynolds number ReU on the frictional 

pressure gradient are examined in Fig. 4. The lubrication theory results by Fitt and 

Please (2001) and duct flow results by Hartnett and Kostic (1989) are also plotted. 

The results show that the frictional pressure gradient increases as the tangential flow 

Reynolds number increases. The largest differences occur for more strongly shear 

thinning fluids (smaller m). At relatively low tangential flow Reynolds numbers 

(ReU<5) for shear thinning fluids with m<0.6 the numerical results lie between the 

results for lubrication theory and those for duct flow. For m=0.33 the effects of the 

two Reynolds numbers on the friction factor are shown in Fig. 5 which shows that the 

frictional pressure gradient increases with increasing tangential flow Reynolds 

number. This is discussed further in section 3.3 below. 

 

The u and w velocity component profiles on the cavity centreline (x=0.5) for ReU=10 

and α=0.2 are shown in Fig. 6. It is seen that the u velocity profiles are flattened for 

shear thinning fluids. For more strongly shear thinning fluids (smaller m) the values 

of the u and w velocity components are higher close to the lid (y=0.25) because the 

apparent viscosity is lower here. For m=0.33, the effect of velocity ratio on the cavity 
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centreline u and w velocity component profiles is shown in Fig. 7. For tangential flow 

dominated conditions (small velocity ratio), the asymmetry in the w profile is more 

obvious as shown in Fig. 7b. With increasing velocity ratios, the axial flow becomes 

dominant; the u-velocity profiles change very little while the location of the maximum 

w velocity component moves towards the centre of the cavity, and the axial velocity 

profile tends to the axisymmetric form found in duct flow.  

 

3.3. Effects of tangential flow Reynolds number and velocity ratio on the tangential 

flow streamlines, axial velocity and viscosity distributions (A=0.5) 

In this section, contour plots are given for an aspect ratio of 0.5 so as to give more 

detailed information on the flow field and its behaviour close to the corners in 

particular. It is worth mentioning that in three dimensions flow streamlines in a cross 

section are disconnected points: the streamlines displayed in this text are quasi-

streamlines for tangential flow which are computed from the corresponding tangential 

velocity components. The difference in magnitude between successive lines is the 

same in each plot and higher contour values are always represented by lighter lines. 

For streamlines and axial velocity, the contour values are zero on the surfaces and the 

value of consecutive lines increases (for axial velocity) or decreases (for streamlines) 

monotonically, therefore only the inner-line contour values are given on the figures. 

For the dimensionless pressure and dimensionless viscosity distributions (normalized 

by the characteristic viscosity) the detailed contour values are listed on the plots.  

 

For Newtonian fluids with fully developed flow in the axial direction, the tangential 

flow is independent of the axial flow, although the reverse is not true. Changes with 

tangential Reynolds number in the tangential flow streamlines, pressure distributions 



 16 

in the plane of tangential flow and the axial velocity distributions are displayed in Fig. 

8 for m=1 with ReU=1 and 100, respectively. At low tangential Reynolds number the 

tangential secondary flow, pressure and axial velocity component are close to 

symmetrical as shown in Figs. 8a, 8c and 8e. On increasing the tangential Reynolds 

number, the tangential flow circulation zone moves towards the downstream 

singularity corner (Fig. 8b) while the axial velocity peak is shifted in the opposite 

direction away from the downstream singularity corner (Fig. 8f). The pressure 

distribution is shifted owing to the strong tangential circulation (Fig. 8d).  

 

For shear thinning fluids, the tangential and axial flows interact with each other and 

the final flow picture depends on the tangential Reynolds number, the axial Reynolds 

number and the velocity ratio. For m=0.33 and ReU=1 at velocity ratios of 0.2 and 1.0, 

the tangential flow streamlines, pressure distribution, axial velocity distribution and 

normalized viscosity are shown in Fig. 9. At a velocity ratio of 0.2, the centres of both 

the tangential flow streamlines (Fig. 9a) and the axial velocity (Fig. 9e) are closer to 

the lid than for the Newtonian case (Figs. 8a and 8e). This is consistent with the u and 

w velocity profiles shown in Fig. 6. When the velocity ratio is increased, the centres 

of the tangential flow streamlines (Fig. 9b) and the axial velocity (Fig. 9f) shift 

towards the cavity geometry centre. This is consistent with the velocity profiles 

shown in Fig. 7. As for strongly shear thinning fluids, the axial velocity profile is 

highly flattened, the principal contribution of the axial velocity to shear thinning of 

the viscosity being close to all the surfaces. Thus, with increasing velocity ratio, the 

apparent viscosity is further reduced, especially close to the surfaces (Fig 9h). 
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For m=0.33 and ReU=100 at velocity ratios of 0.01 and 0.2, the tangential flow 

streamlines, pressure, axial velocity and normalized viscosity are shown in Fig. 10. 

For shear thinning fluids (Figs. 10a and 10b), the centre of the tangential flow 

circulation shifts further towards the downstream singularity corner than for 

Newtonian fluids (Fig. 8b). This is also reflected in the pressure distributions in Figs. 

10c and 10d. Figs. 10e and 10f show that the axial velocity peak is shifted with 

velocity ratio. Numerical experiments indicate that the location of the axial velocity 

peak also depends upon the Reynolds numbers and the apparent viscosity distribution. 

At low velocity ratios, the axial velocity peak is close to the downstream singularity 

corner. With increasing velocity ratio, the axial velocity peak shifts towards the 

upstream singularity corner. Figs. 10g and 10h show that the location of the viscosity 

peak also changes with velocity ratio. At high tangential Reynolds numbers and low 

velocity ratios (α<0.01), the shear thinning is controlled by the velocity gradients in 

the tangential secondary flow. The strong flow near the downstream singularity corner 

causes a reduction in apparent viscosity in that region and the apparent viscosity 

centre peak (distinguished from the apparent viscosity peaks at the stagnation corners) 

is close to the upstream singularity corner (Figs 10g and 10h).  

 

From the above discussion we can see that in lid driven cavities with axial flow the 

flow exhibits complex behaviour. The axial flow is distorted by the tangential flow 

and the effect intensifies with increasing tangential flow Reynolds number. As a 

result, the frictional pressure drop is increased with increasing tangential flow 

Reynolds number. The increase is profound for strongly shear thinning fluids, the 

complex interaction between the tangential and axial flow leading to complex 

distributions in local viscosity and a substantial increase in the frictional pressure 
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gradient at high tangential Reynolds number, as shown in Figs. 4 and 5. During these 

computations, the flow is assumed to be both steady and stable. Further investigations 

relating to flow stability at high tangential Reynolds numbers are clearly worthwhile, 

but are beyond the scope of this text. 

 

4. Conclusions 

The finite element method has been used successfully to study fully developed 

isothermal flow of power law fluids in lid driven cavities with axial throughflow. A 

simple numerical procedure is used to calculate the tangential and axial velocities and 

the frictional pressure drop in a lid driven cavity. The effects of tangential and axial 

Reynolds numbers, the velocity ratio, the cavity aspect ratio and the shear thinning 

property of the fluids on the flow field and frictional pressure drop are studied. Where 

comparison is possible, very good agreement is generally found between the 

numerical results and published analytical, asymptotic and numerical results. It is 

found that with more strongly shear thinning fluids (m<0.6), for tangential flow 

dominated (α<0.2) low Reynolds number flow, the frictional pressure drop in thin 

long cavities lies between the analytical results based on lubrication theory (where the 

axial flow was negligible) by Fitt and Please (2001) and duct flow results by Hartnett 

and Kostic (1989). 

 

In a lid driven cavity the u and w velocity profiles are both flattened with power law 

fluids in comparison with the profiles obtained for Newtonian fluids. The tangential 

flow interacts intensely with the axial flow. At high tangential Reynolds number the 

increasing distortion in the axial velocity leads to an increase in frictional pressure 

drop and this happens for both Newtonian and non-Newtonian fluids. For power law 
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fluids, the interaction between the tangential and axial flow leads to complex 

distributions of axial velocities and apparent viscosity, and a substantial increase in 

the frictional pressure gradient.  

 

In this research, a range of parameters has been studied with the intention of 

extending our basic understanding of power law fluid flows in lid driven cavities with 

axial flow. The results can be used to interpret the behaviour of screw extruders or 

scraped surface heat exchangers. 
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Appendix. Frictional pressure gradient for two extreme conditions in a 

rectangular geometry 

1. Creeping flow in an infinitely long cavity with power law fluids (valid whenever  

ReU A2 << 1, A<<1 and α<<1) 

Fitt and Please (2001) provided analytical results for the motion of power law fluids 

in thin, long cavities. Assuming a small reduced Reynolds number flow in an 

infinitely long cavity, the inertia terms in the flow equations and the cavity end effects 

can be neglected. The contribution of axial flow to the shear thinning viscosity is also 

neglected by assuming that tangential flow is dominant. Analytical results may then 
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be obtained from lubrication theory. The analytical results give the average axial 

velocity as 

 

)(
11
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UHp
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mm
Z

−+−
=        (A1) 

 

where m is the shear-thinning index, H is the gap width or height of the cavity, U is 

the lid velocity and -pz is the axial pressure gradient. f(m) is a (known) function of m 

which also depends on the (known) location of the minimum u velocity. Values of the 

function f(m) for selected values of m are listed in Table 1. 

 

The non-dimensional frictional pressure gradient can be obtained from equation (A1) 

as  
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where gl(m,A) is a (known) function of m and the cavity aspect ratio A. 

For Newtonian fluids, the average axial velocity is 
F
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=  and the non-

dimensional frictional pressure gradient is
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2. Flow in a rectangular duct with power law fluids (For ReU<<1 and α>>1) 

For fully developed laminar flow of power law fluids in a rectangular duct, the 

frictional pressure gradient was given by Hartnett and Kostic (1989) as 

m
m

dd m
baRef 





 += +132        (A3) 
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where the friction factor in a duct is defined as 2
2 2

2
1 W

Dp
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d ρρ

τ −
== , the Reynolds 

number for duct flow is
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24  is the hydraulic 

diameter of the duct: a and b are constants that depend on the duct aspect ratio. 

Equation (A3) can be expressed as  

 ),(Re2Re
2

Amgf
D
Lf ddd

H
W =








=      (A4) 

where gd(m,A) is a function of the shear thinning index m and cavity aspect ratio A. 

 

It is seen that in both cases, the non-dimensional frictional pressure gradient is a 

function only of m and A as expressed in equations A2 and A4. The relation between 

fReW and m is plotted in Fig. A1. It is seen that the value of the non-dimensional 

frictional pressure gradient fReW increases with increasing power law index m or with 

decreasing aspect ratio A. Interestingly, there is always an intersection point at each 

aspect ratio where the two values are the same.  
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Figure Legend 
 
Fig. 1. (a) schematic view of  the cavity, (b) mesh at aspect ratio A=0.5 with 3470 
elements. 
Fig. 2. Friction factor f as a function of ReW for various value of power law index m 
A=0.1 and ReU=1. Solid lines: lubrication theory; Symbols: computed values.   
Fig. 3. Frictional pressure gradient at ReU=1: (a) A=0.05 and (b) A=0.1 shows the 
effect of ReW and m, (c)  A=0.25 the effect of velocity ratio.  Solid lines: lubrication 
theory by Fitt and Please (2001); Dotted lines: duct flow results by Hartnett and 
Kostic (1989); Symbols: computed values. 
Fig. 4. Effect of tangential flow Reynolds number on fReW for A=0.25 and ReW=1.  
Solid lines: lubrication theory; Dotted lines: duct flow; Symbols: computed values.   
Fig. 5. Effect of tangential flow Reynolds number on f for A=0.25, m=0.33. 
Solid lines: lubrication theory; Dotted lines: duct flow; Symbols: computed values.   
Fig. 6. Effect of shear thinning index m on the velocity profiles at the cavity 
centreline x=0.5 for A=0.25, ReU=10 and U/W=0.2. (a) u velocity component (b) w 
velocity component.  
Fig. 7. Effect of velocity ratio on the velocity profiles at the cavity centreline x=0.5 
for A=0.25, ReU=10, m=0.33 and W/U=0.2. (a) u velocity component (b) w velocity 
component.  
Fig 8. Effect of tangential flow Reynolds number on the tangential flow streamlines 
(top) pressure distribution (middle) and axial velocity profile (bottom) for A=0.5 and 
ReW=1 with Newtonian fluid m=1. (a), (c), (e) ReU=1, (b), (d), (f) ReU=100. For 
streamlines and axial velocity the contour values at the surface are zero, only the 
maximum/minimum contour values are listed on the plots. 
Fig 9. From top: the effect of velocity ratio on the tangential flow streamlines, 
pressure distribution, axial velocity profile and normalized apparent viscosity µ/µF for 
A=0.5 and ReU=1, m=0.33. (a), (c), (e), (g) W/U=0.2, (b), (d), (f), (h) W/U=1. For 
streamlines and axial velocity the contour values at the surface are zero, only the 
maximum/minimum contour values are listed on the plots. 
Fig 10. From top line : the effect of velocity ratio on the tangential flow streamlines, 
pressure distribution, axial velocity profile and normalized apparent viscosity µ/µF for 
A=0.5 and ReU=100, m=0.33. (a), (c), (e), (g) W/U=0.01, (b), (d), (f), (h) W/U=0.2. 
For streamlines and axial velocity the contour values at the surface are zero, only the 
maximum/minimum contour values are listed on the plots. 
Fig. A1. Frictional pressure gradient from lubrication equation A2 and duct flow 
equation A4. Solid lines: lubrication theory by Fitt and Please (2001); Dotted lines: 
duct flow results by Hartnett and Kostic (1989). 
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Table 1. Tabulated values of function f(m) in equation (A1) at various values of 

power law index m. 

M 0.2 0.4 0.6 0.8 1.0 

f(m) 0.0576 0.0977 0.1015 0.092868 0.08333  
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Fig. 1. (a) schematic view of  the cavity, (b) mesh at aspect ratio A=0.5 with 3470 
elements. 
 
 
 

 
Fig. 2. Friction factor f as a function of ReW for various value of power law index m 
A=0.1 and ReU=1. Solid lines: lubrication theory; Symbols: computed values.   
 
 
 
 
 
 
 
 
 

0
10000
20000
30000
40000
50000
60000
70000

0 0.1 0.2 0.3 0.4 0.5
Rew

f

m=0.33
m=0.6
m=1.0



 27 

(a) 

(b) 

(c) 
 
Fig. 3. Frictional pressure gradient at ReU=1: (a) A=0.05 and (b) A=0.1 shows the 
effect of ReW and m, (c) A=0.25 the effect of velocity ratio.  Solid lines: lubrication 
theory by Fitt and Please (2001); Dotted lines: duct flow results by Hartnett and 
Kostic (1989); Symbols: computed values. 
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Fig. 4. Effect of tangential flow Reynolds number on fReW for A=0.25 and ReW=1.  
Solid lines: lubrication theory; Dotted lines: duct flow; Symbols: computed values.   

 
Fig. 5. Effect of tangential flow Reynolds number on f for A=0.25, m=0.33. 
Solid lines: lubrication theory; Dotted lines: duct flow; Symbols: computed values.   
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(a) 

(b) 
 
Fig. 6. Effect of shear thinning index m on the velocity profiles at the cavity 
centreline x=0.5 for A=0.25, ReU=10 and U/W=0.2. (a) u velocity component (b) w 
velocity component.  
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25
Location y

w
 c

om
po

ne
nt

m=0.33
m=0.6
m=1.0

-0.5

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25
Location y

u 
co

m
po

ne
nt

m=0.33
m=0.6
m=1.0



 30 

 
 
 
 
 

(a) 

(b) 
Fig. 7. Effect of velocity ratio on the velocity profiles at the cavity centreline x=0.5 
for A=0.25, ReU=10, m=0.33 and W/U=0.2. (a) u velocity component (b) w velocity 
component.  
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(a)                                                                       (b) 
 
 
 
 
(c)                                                                        (d)                                                           
 
 
 
 
 
(e)                                                                        (f) 
 
 
 
 
 
 
Fig 8. Effect of tangential flow Reynolds number on the tangential flow streamlines 
(top) pressure distribution (middle) and axial velocity profile (bottom) for A=0.5 and 
ReW=1 with Newtonian fluid m=1. (a), (c), (e) ReU=1, (b), (d), (f) ReU=100. For 
streamlines and axial velocity the contour values at the surface are zero, only the 
maximum/minimum contour values are listed on the plots. 
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(a)                                                                                                                                 (b) 
 
  
 
 
(c)                                                                                                                                (d)                      
 
 
 
 
(e)                                                                                                                                 (f) 
 
 
 
 
 
(g)                                                                                                                                 (h) 
Fig 9. From top: the effect of velocity ratio on the tangential flow streamlines, 
pressure distribution, axial velocity profile and normalized apparent viscosity µ/µF for 
A=0.5 and ReU=1, m=0.33. (a), (c), (e), (g) W/U=0.2, (b), (d), (f), (h) W/U=1. For 
streamlines and axial velocity the contour values at the surface are zero, only the 
maximum/minimum contour values are listed on the plots. 
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(a)                                                                  (b) 
 
 
 
 
(c)                                                                   (d)  
 
 
 
 
(e)                                                                    (f) 
 
 
 
 
 
(g)                                                                    (h) 
 
 
Fig 10. From top line : the effect of velocity ratio on the tangential flow streamlines, 
pressure distribution, axial velocity profile and normalized apparent viscosity µ/µF for 
A=0.5 and ReU=100, m=0.33. (a), (c), (e), (g) W/U=0.01, (b), (d), (f), (h) W/U=0.2. 
For streamlines and axial velocity the contour values at the surface are zero, only the 
maximum/minimum contour values are listed on the plots. 
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Fig. A1. Frictional pressure gradient from lubrication equation A2 and duct flow 
equation A4. Solid lines: lubrication theory by Fitt and Please (2001); Dotted lines: 
duct flow results by Hartnett and Kostic (1989). 
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