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Recently, much attention has been given to the study of mixed systems of conservation laws, in which
evolutionary systems of partial differential equations have the property that some of their eigenvalues
are complex This has led to some confusion, particularly in the field of two-phase flow, in which the
correct form of the governing equations for different flow regimes is not clear. In this study we consider
two mixed systems, one being a 2 X 2 system in which the analytic solution is known if certain special
waves are defined and the other a prototype system of equations for modelling single-pressure two-
phase flow. By using these examples it is shown both analytically and by numerical experiment that
solving such sets of equations is far from an easy matier The results have implications for the modelling
of two-phase flows and other mixed systems, suggesting thar although in some cases it might be
possible to calculate solutions successfully, great care is generally needed in interpreting numerical

results. This emphasizes the continuing requirement for more detailed mathematical modelling of two-
phase flows.
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Introduction

In recent years there has been a great deal of interest
int the mathematical modelling and properties of *‘mixed”
systems of conservation laws in which there are re-
gions in phase space in which the cigenvalues of the
system become zero, coincident, or complex. Such
systems occur in many different branches of applied
mathematics, two {(of many) examples being the mod-
elling of traffic flow! and the study of the Riemann
problem for a van der Waals fluid.? Mixed systems
have also been studied as prototype systems in their
own right. Examples of such work are the papers by
Shearer,® Keyfitz and Kranzer,* and Holden.® Al-
though much is now known about the properties of
such systems, little attention has been given to the
problem of solving them numerically. As far as the
modelling involved in such systems is concerned,
mathematical opinion seems to be divided roughly into
two camps, one of which refuses to entertain any mixed
system of conservation laws, arguing that any mod-
elling that has led to such a system must be incorrect,
and the other of which accepts such systems seemingly
without qualms. The purpose of the present study is
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to show that while the former point of view is rather
limiting and leaves us with many difficult modelling
problems to solve before we can address a wide range
of physical problems, the latter point of view can be
somewhat dangerous.

As far as the field of two-phase flow is concerned,
the existence of regions of phase space where the ei-
genvalues become complex has been known for some
timé. A considerable literature exists concerning the
modelling of such problems, but on the whole it is fair
to say that the modelling problem has not completely
been resoived. Stuhmiller® considered an incompres-
sible two-phase flow model in which the interfacial
pressure was not assumed equal to the bulk pressure,
equality of pressures being an assumption that had
been made in earlier models and was known to lead to
the existence of complex characteristics. By adding
drag and virtual mass terms to the equations of motion
Stubmiller was able to produce a set of conservation
laws whose characteristics were real in the limit when
the volume fraction of the dispersed phase tended to
zero. It is known, however, that even for quite modest
dispersed phase volume fractions, there are still com-
plex eigenvalues. Hancox et al.” also considered two-
pressure models, distinguishing between different
two-phase flow regimes by including different inter-
facial pressure relationships. Their model for bubbily
flow is essentially similar to Stuhmiller’s. Again real
characteristics were found in some limits of small dis-
persed phase volume fraction.
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Various two-pressure models for stratified flow were
developed by Ransom and Hicks,® who supplemented
the standard momentum and mass conservation laws
by adding a void fraction propagation equation. Reat
characteristics were obtained, but the physical moti-
vation of the void fraction propagation equation seems
unclear, and the equation cannot be derived via any
rational averaging means. Other criticism of models of
this sort have also been made on the grounds that for
steady flow along a pipe with a pressure drop a steady-
state solution does not exist. Prosperetti and Van
Wijngaarden® proposed an interesting model for two-
phase bubbly flow that gave real characteristics in cer-
tain circumstances as long as the relative velocity was
small. They included a somewhat ad hoc *‘relative
velocity equation,” however, and again their model
suffers from the defect that the equations caanot be
derived from any rational averaging process.

A review of existing two-phase flow models was
undertaken by Siewarl and Wendroff 1° As well as
standard two-phase models, they also considered so-
called ““barvcentric”” models in which some equations
for the motion of the mixture were added to the system
and models in which the velocities of the two phases
are assumed equal (or propostional to each other with
a known constant of proportionality), so that a total
momentum eqguation is required. They also commented
on the fact that, in general, existing models either seem
to lead to complex characteristics in some circum-
stances or are nonphysical in some respects. Their
comments on the numerical solution of nonhyperbolic
problems suggest that, as far as they are concerned,
there is no completely acceptablie totally hyperbolic
two-phase flow model.

From the above discussion it seems clear that al-
though some modelling progress has been made, the
problem is far from solved. Although in some very
specialized flow regimes the eigenvalues may be real,
there are still many cases in which the appearance of
complex eigenvalues seems inevitable. Clearly, there
is interest in studying mixed two-phase flow systems
and relevant prototype systems, both from an analyt-
ical and a computational point of view.

After making some comments of a more theoretical
nature we wish to illustrate some of the problems in-
herent in solving mixed systems by purely numerical
means by considering two distinct sets of-conservation
laws. Qne set Is a “‘p-system” with an elliptic region,
which we are able to solve analytically (provided that
certain compromises are made) as well as numerically,
and the other is a prototype mixed system of equations

for two-phase flow, whose analytical solution is not
available.

Mathematical modelling of two-phase flow and
mixed systems

A mixed “p-system”’

Although the real motivation for considering sets of
mixed-type conservation laws is the study of two-phase
flow models, it is instructive to consider first a simpler
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mixed problem that admits an analytical solution. In
particular we will further simplify matters by consid-
ering only Riemann problems, so the initial data we
choose will consist simply of the specification of a
“left” and a “*right’” state, both of which are constant
and are separated by a notional ‘“‘membrane,’* which
is punctured at time ¢ = 0 allowing the “‘flow’” to begin.
Such problems may be thought of as the simplest case
of the more general Cauchy problem in which piece-
wise continuous data are given at ¢ = (. The particular
system that we shall consider first is of the type de-

noted by Smoller a *‘p-system’ and appears in con-
servation form as

w,+ F(w).,=0 0y
where
w={u ot F=012, —ut )

The solution of the Riemann problem for these equa-
tions may now proceed much as in the case of a stan-
dard totaily hyperbolic 2 x 2 system (for details, see,
for example, Ref. 11): It is easily established that the
cigenvalues of the system are given by

/\] _('—U)IIZSOS(_U)IIZ:/\z

and are therefore real and distinct for v < 0, equal and
zero for v 0, and pure complex for v > (. The
associated unit right eigenvectors are

ry = (1~ ) (=)', )T
1= (1= ) ¥~ (=)', 7

and the Rankine-Hugoniot conditions require that for
a shock with left state (i, v,) 7 the states u and v satisfy

u = uy, = ((vp — vNe?2 — v3/2)V?

We also note that in the case vy = 0 we have VA;(w) 1;(w)
= 0 so that here the system is not genuinely nonlinear,
This line is usually known as a fognal. As far as entropy
conditions are concerned, the standard Lax ¢ondition
may be extended in the usual way when elliptic regions
are present (see, for example, Ref. 12) to give the Liu-
Oleinik condition that

s(wz, Wg) = s(wy; w)

where s is the shock speed, for all w on the Hugoniot
curve between wy and wg. Having dealt with the shocks,
we note that a j-rarefaction will be given by

Wi x/t << l\j(WL)
w=1nx,1) A(wy) = x/t= A (wg)
Wg xlt> Aj(WR)

where 1 satisfies
7' = r;(n()
N (wr)) = wg

s0 that there are no rarefactions for v > 0 and the
rarefaction curves for » < 0 are given by

u=ug = H(-0)*? - 77

(and on these curves, v = —(x/£)?). Without giving all

A (W) = wy
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the details of the solution to the Riemann problem,
which are somewhat long and complicated (for full

details, see Ref. 13), we make the following observa-
tions.

1. The solution proceeds by connecting the left and
right states to each other via a series of shocks and/or
rarefactions, always ensuring that the Rankine-
Hugoniot conditions are satisfied (so that the so-
lution curve in phase space is a Hugoniot line) and
the entropy conditions are met. In addition, there
is the obvious requirement that shock or rarefaction
waves contained in the solution must not overtake
each other.

2. The solution divides into two main parts according
to whether w;, is in the real (v, << 0) or the complex
{vz > 0) region of phase space. Cases in which the
left state lies on the fognal may be dealt with in a
fairly obvious fashion once the solution is known
in these two regions. Without loss of generality the
w-ordinate of wy may always be taken as zero, and
we have also chosen to take the v-ordinate of the
left state as +2. Phase space is then divided into
the regions shown in Figure 1 for different choices
of Wy.

3. The regions in Figure 1 are bounded by various
curves in phase space. For the specific w,, R;, Ra,
Sy, and §; are the 1- and 2-family rarefaction and
shock Hugoniots, respectively, while F is the fognal
line. The curve ST represents the reflection of the
S1 curve in the fognal, which is the locus of the
““last point” that can be reached via a 1-shock, while
K; is the last 2-rarefaction emanating from the fog-
nal. Similarly the curves 5% and R; are the last 2-
shock and 2-rarefaction curves in the case in which
wy lies in the complex region of phase space. The
straight line L' has equation v = 2, and [ is its
reflection in the fognal.

(br = —2)

Region I: w; — w} € Ri(w,) —— wr € Sy{w)
Region 2: w; — w} € Ri(wy) — wiz € R.(w)
Region 3: wp - w} € Si(w;) — wr € Ry(w}
Region 41 w; — w} € Si(wp) —— wg € Sy(w)
Region 5: w, — w} € §1(w;) — wy € S,(wd)

4

Figure 1. Hugoniot curves, lines, and regions for the mixed
p-system for the cases v, < 0, v, > 0

If we denote successive intermediate states by w?
forn =1,2...,the solution of the Riemann problem
may then be given as follows:

Region 6: w, — w} € S)(w) — wi € SH(w) — wx € S, (WD
Region 7:  wy — w} € Ry(wy) —— w} € So(w)) —> wy € S,,(w)

Region 8: Wy —> W} < R](WL) — Wiy € Sz(W})

Region 9. w; — w} S Ri(wr) —— wi € S, (W) — wr € Ry(w)

(vr = 2)

Region 11 wy -—— W} € S,(wz) —> W} € S (W) —> wg € Sy(w))
Region 2: w, —— w} € S,,(wy) —> w} € S (wl) — wg € Rx{w)

Region 3: w; —— w} € S:{wy) — wr € Ru(w)
Region 4 w; —> w} € S;(wy) —> wr € Sx(wh
Region 5: Wy —> W_llr = Sl(WL) —> Wiy €& Sz(W})

Region 6: wy —— w] € Si(w;) — w? € SHwh) — wr € S,,(wD.
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Here we have used a notation that is obvious for
the most part but that involves some nonstandard so-
lution components that require further discussion. Spe-
cifically, as well as shocks and rarefactions the (unique)
solution employs stationary shocks and monotonic split
shocks. These are described by the symbols S,, and
S5, Tespectively. To give an example of the notation:
For vy = —2 and wy in region 1 the left state is con-
nected to an intermediate state w} by a 1-rarefaction;
w; then joins to the right state wg via a 2-shock to
complete the solution.

The stationary and monotonic split shocks require
some more explanation. A stationary shock is a shock
of speed zero with v, = —uv,, where v, > 0. The zero
speed may then be verified from the Rankine-Hugoniot
relationships after elimination of #; and ug. The defi-
nition of a monotonic split shock has been made to
allow a unique solution to be determined in all of
the regions. Specifically, we allow only one of the
Rankine-Hugoniot conditions to be satisfied in the nor-
mal way. The other is disregarded, since it gives rise
to a shock of infinite speed. In general, therefore, for
a monotonic split shock; # will change while v remains
constant. Monotonic split shocks may therefore be
considered to be *‘normal’’ to stationary shocks. The
monotonicity is included in the definition for the ob-
vious reasons of uniqueness. With these assumptions
it is easy to prove the following resuits.

Proposition 1. For all w; with v, < 0, any connec-
tions to other states and further connections from these
states to others must satisfy v = max {0, v}, where vg
is the v-ordinate of the final state.

This property may be used in the numerical calcula-
tions to help the stability of the computations. The
following can also be shown.

Proposition 2. The Riemann problem may be solved
uniquely for any right state when v; < 0 by a solution
consisting of rarefactions, standard shocks, and mon-
otonic split shocks.

Proposition 3. When vy > 0, the sets of points on
the 1-shock curves are disconnected from wy in phase
space. Moreover, the solution contains no 1-rarefac-
tions. The Riemann problem may be solved uniquely
by a combination of shocks, 2-rarefactions, monotonic
split shocks, and stationary shocks.

- In each case it should be noted that the uniqueness is
elementary but tedious to prove, amounting to nothing
more than use of the definitions and the univalent cov-
ering properties of the shock and rarefaction curves.
The cases in which w; lies on the fognal may be treated
similarly, except that now some of the regions become
trivial,

The nonstandard features of the solution may be
criticized on the grounds that they are somewhat ar-
tifical and in some senses contrary to what we expect
from the solutions of hyperbolic problems. Neverthe-
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less, we shall see that the numerics actually do a re-
markable job in picking up these solution components.
In the final analysis the only way of deciding whether
or not some of the nonstandard features are “*physical’
is to consider a regularized system such as

Yo+ 6= Y
seeking travelling wave solutions of the form

y=y&  (¢=(x—ste
where
W—)=yr y(+x)}=yz y(xre)=0

so determining the ‘“‘viscous profile” that gives the
shock as e — 0 (for fuller details and more associate
references, see Ref. 11). Such profiles, however, have
proved notoriously hard to find for mixed problems,
and the mathematical difficulties in locating them® seem
to preclude any ‘“‘physical’ justification of this sort.

The two-phase flow equations

One of the criticisms that may be levelled against
the p-system that we have considered is that it is only

~a2 X Zsystem and so either all of the eigenvalues are

real or all are complex. Therefore we now consider a
specific two-phase flow, namely gas/particulate flow,
in which solid particles are dispersed in a gas. The
solid particles are assumed to be large enough that the
“dusty gas’’ approximation that is relevant in some
cases and leads to real eigenvalues'® is not valid. More-
over, the solid particles are themselves reactive and
are continuously being converted into gas via burning.
One application in which this variety of two-phase flow
is particularly relevant is the internal ballistics of a
large-caliber gun, in which the solid particles are gun
propellant and the high-pressure gas that is produced
by the combustion forces a projectile out of a barrel.
Traditionally, in this ficld the single-pressure model
has been used!>!¢ that consists of the equations

(21 A + (A1), = CD
{p2A2); + (p2Aoy), = C2
(prA1i): + (pr A, + Ayp. = CW®
(prAsitr), + (p2A218), + Asp, = C¥

(mALED), + t:pIAI iy (E1 + E)} + plAzup), = C®

P1
(N2): + (N1, = 0

Here the subscript 1 refers to the gas phase and 2 to
a solid phase, which we assume is made up of granular
material; p represents density, « velocity, p pressure,
and A cross-sectional area. For simplicity we take the
total cross-sectional area to be unity so that A, +
A; = 1. The total energy is given by E = (14/2) + e,
where e is the internal energy, and N, denotes the
number density of solid particles per unit length. De-
pending on the type of flow that we are considering,
the source terms C to C® may include details of
interphase mass, momentum, and heat transfer as well
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as losses via conduction, diffusion, and other source
terms, but we always assume that these source terms
do not contain any derivatives. An equation of state
for the gas phase must also be added to the model, and
in many highly reactive flows this may have to be a
second-order law such as the covolume equation. Here,
however, for simplicity we assume that the gas is a
perfect one and obeys the relationship

p=pRT

where R is the universal gas constant, and the sound
speed ¢ of the gas is given by ¢z = yp/p;. We also
require a set of boundary conditions; for example, we
always specify all of the flow variables at time ¢t = 0
and assume that no flow takes place through any solid
boundary.

Although, as remarked above, this model has tra-
ditionally been used for the study of internal ballistics
in which the solid phase is assumed incompressible so
that there is an energy equation only for the gas phase,
it has also formed the basis of many other studies of
widely differing two-phase flow regimes. Examples of
this are the work of Thyagaraja et al.,!” Assimacopou-
los,'® and Ardron and Duffey.?® For the purposes of
Riemann problem computations it is convenient to sim-
plify the equations further. If we set the source terms
to zero (since we assumed that the source terms con-
tain no derivatives, this cannpot affect the hyperbolicity
of the system) and discount the equation for the num-
ber of particles, assuming this variable to be constant,

then some simple algebra shows that the system may
be recast as

(P A, + (ui1p1 A, =0
(Ag); + (U2 42), =0

@e)r + uyty, + Bx_y
™ 3

2
(), + (3‘3 + —3) =0
2 p/s
(p): + urp; + (?) (A + 1:A5), =0
1

and while this system is physically less realistic than
the original one, the two are very similar mathemati-
cally. It should be noted that the equations are not in
conservation form. This is a consequence of the av-
eraging that has been used and is unavoidable. A stan-
dard characteristic analysis is easy to perform; writing
the system as

w, + Aw, =0
where

W= (P1A1> A27 Uy, Uo, P)T
we find that the eigenvalues of A are given by

/\.=yC”"£"H.'1
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where the gas sound speed ¢ is given by ¢2 = yp!py
and y satisfies the equation

YO -2VE+ (V2P —g - D)+ 2Vy = VH =0
4

with

V_uz—ul q:Asz
c Ao,

Clearly, the zero characteristic speed corresponds to
the incompressibility of the solid phase, but the be-
havior of the roots of the remaining quartic is less clear.
For V = 0 {zero phasic relative velocity) we find triv-
ially that there are two more zero and two real roots,
but some elementary analysis shows that for nonzero
V the equation has four real roots if and only if

V2 = (1 + q1f3)3

If this condition is not met, then there are two real and
two complex sound speeds. The boundaries V = Oand
g = 0, where all of the characteristics are real, are
therefore singular lines, and any perturbation of po-
sition in phase space will induce a pitchfork bifurcation
from a repeated zero eigenvalue to two complex ones.
Left cigenvectors for the system are given by

(__c2, 05 05 05 1) and
CZP]V )
0,——— cp,co(¥? — 1),
( AV =3P ey — 1),y

so that the Piaffian ordinary differential equations for
the Riemann invariants are

_Czdpl = dp

mVy
— o dA; +epduy + cp{y? - Dduy +vydp =0
AV —y) LA T cprdi p2(y* — Ddu, + ydp

The first of these is simply the definition of the sound
speed, while in general the second is not integrable,
so Riemann invariants cannot be explicitly derived and
the problem solved completely as we were able to do
for the p-system that was considered above. Indeed,
the only case in which any of the nontrivial Riemann
invariants may be determined is when g = 0. In this
case the two eigenvalues y = V give Riemann invar-
iants A; = constant, but this does not provide us with
any more information. In spite of the impossibility of
solving the general Riemann problem, the equations
do have the helpful property that the eigenvalues de-
pend only on the two parameters ¢ and V. This means
that the main features of the solution can be inferred
from two-dimensional phase portraits, just as was pos-
sible for the problem (2).

As far as the physical motivation for the two systems
of equations is concerned, it is probably best to treat
(2) as merely a synthetic problem, though it can be
interpreted as a nonlinear wave equation. Concerning
the second system, it was noted in the introduction




that the extent of the elliptic region in phase space may
be decreased (though not, in general, eliminated) under
certain circumstances by the addition to the model of
extra derivative terms representing such effects as tur-
bulence, drag, virtnal mass, and torque. In view of the
fact that the modelling problem has not been satisfac-
torily solved, we shall study the unextended system
(3) because of its popularity and simplicity. It seems
likely that similar conclusions will apply in elliptic re-
gions of phase space to other versions of the equations
(see, for example, Refs. 20-22).

Having described both of the conservation law sys-
terns that we wish to consider, some further comments
on the role of *‘viscosity’” are necessary as a prelude
to numerical considerations. Although the particles in
the flow are incompressible and the gas is assumed
inviscid, is it the case that if a small amount of viscosity
is added to the equations of motion, the complex char-
acteristics will disappear? To address this question,
consider instead of (2) the system of conservation laws

U, + bu, = €,
o — Uz =0 &)
q =,

The eigenvalues of this 3 x 3 system are given by
A = o o and 0 so that the system is truly parabolic
and no ill-posedness is present. In this respect the in-
viscid system is a singular limit of the viscous system.
It is tempting to argue that this result shows that the
inclusion of any nonzero viscosity makes the model
well-posed, and therefore since some numerical dif-
fusion will inevitably be introduced when the equations
are solved numerically, the problems caused by the
appearance of the complex characteristics in the in-
viscid model is a purely theoretical one. Unfortunately,
this begs some important questions. First, we expect
that when the flow is nearly inviscid, we will be able
to use inviscid equations in the core of the flow, cou-
pled to viscous boundary layer equations near the walls.
This is a matter of experience, based on knowledge of
single-phase flows in which the inviscid limit of the full
equations is perfectly well-posed, and it would be very
surprising if the same were not true for two-phase flow.
Second, it is possible to demonstrate that the complex
characteristics may taint the inviscid limit of the vis-
cous equations.

Proposition 4. For the fully viscous version of the
system (2) (that is, the system (2) with viscous terms
added to both equations) there are always wave num-
bers k associated with Fourier modes that grow ex-
ponentially in time.

To show this, consider the effect of introducing a mode
W =W, eikx = wl
into the ““frozen’” system

Agw, + Bow, + Cow, = 0

il-posed conservation laws: A. D. Fitt

where 4, = I, Cy = diag [—¢, — &1, and

0
B°=(—1 %ﬁ)

Here the subscript 0 represents the frozen state, and
€ and & are the two viscosities. For a nontrivial wy we
require that

det[—wA + kB — kK*C] =0
which gives

oo ke + 8) = [ke + 8% — 4(edk* — KPvg)]'?
B 2

so that Re (w) < 0 whenever e¢ither k(e + 8) < 0 or
ve = €8k, The former situation can come about only
for negative € and 8, and this is no surprise—we know
that the backward beat equation is ill-posed. The latter
condition, however, can always arise for sufficiently
large vy It is certainly true that if we draw the obvious
parallel with the Euler equations and include viscosity
only in the ‘“‘momentum’” equation (8 = 0), then for
any vp > 0 there will be exponentially growing modes.
It may be argued that this has come about because of
the somewhat pathological nature of the system (2},
but it can also be shown (though the calculation in-
volved is far more lengthy) that for the two-phase flow
equations (3) with terms eu;,, and u,,, added to the
right-hand sides of the phase 1 and phase 2 momentum
equations, respectively, the Fourier modes must sat-
isfy @ = ik(uy -+ yc), where y is a solution of
y =2V 4+ VP — g — 1) + 2yV - V2
+ Kis(y? -y + V— VW) + eKiy[VZ + y¥* — g
—2Vy — K(V — 8]l =0 (6)
Here K = kic and V and g are as defined in (4). We
must now determine whether there are values of w such
that Re (w) < 0, and this is obviously a formidable task
because of the complexity of (6). What we can say,

however, is that for small viscosities where € = O(8)
and K& << 1 the solutions y of (6) will be given by

Y = Yinw + O(Ka)

where y;,,, is the solution to (4). We know that (4) has
solutions, however, with nonzero complex part, say
of the form a = ib. This shows that

w = ik[u; + (g = ib)c]

and so there will inevitably be wave number k for which
Re (w) < 0, and instability will result.

Far from being a deliberately pathological example,
this system is regularly used for practical calculations.
We conclude therefore that even for the viscous system
the near-inviscid limit may suffer from ili-posedness.

Numerical methods for mixed problems

Having discussed two sets of conservation laws, we
now wish to consider the status of existing numerical
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methods, for mixed problems. We begin by making an
elementary observation that, though it has been made
before, bears repetition.

Proposition 5. For a mixed system of conservation
laws with complex eigenvalues in some part of phase
space, a Fourier mode introduced into the solution will
grow exponentially

The demonstration of this is easy: If we “‘freeze’” the
system of conservation laws

w, + Alw,x,Dw, =0

where A is the Jacobian of £ at some time &, and position
%y, then by writing A = PDP™! in the normal way,
where D is the diagonal maltrix of eigenvalues and P
the matrix of eigenvectors, the system may be uncou-
pled if we define v by w = P~ v to give in component
form

(D) + Mi(0d: =0

The x-dependence may be removed by taking a com-
plex Fourier transform in x to give for the transform
variable Vi(k, 1) = %(vdx, )

(Vj)t -+ /‘.,kaz =0

Clearly now if any of the eigenvalues have nonzero
complex parts, then inevitably an exponentially grow-
ing Fourier mode will be introduced.

To investigate the effects that complex character-
istics may have on any numerical calculations that
we may make, consider the application of the Lax-
Friedrichs method to the nonhomogeneous linear ad-
vection equation

u, + au, = fEu)

where « 18 a complex number. Approximating the source
term by f(u) = su (s real), we find after a standard
stability analysis that the symbol of Lax-Friedrichs
finite difference operator is given by

p(&) =G + arDe % + & — ar/2)e

M . .
+ E(e‘“f + e%)

{n the case in which s = 0, a real, we simply retrieve
the standard CFL condition for stability, which re-
quires that Ala| < 1, while if « is real and s is nonzero,
the stability is not affected unless the source term is
too strong. The conclusions when Im {a) # 0 are some-
what different, however. Fors = 0, a = b + ic, we
find that

lp(OP =1 + cAsin2¢ — sin® £

which always exceeds unity for some small value of £,
whatever the value of ¢. This means that in strict terms
the Lax-Friedrichs scheme is unconditionally unstable
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for any a with nonzero complex part. As an aside, we
note that an analysis of the case in which a is complex
and s is nonzero shows that under certain circum-
stances the source term may help the situation and
make the scheme stable.

Also, it is no surprise to learn that similar conclu-
sions may be drawn from the stability analysis of all
of the well-known first-order monotone schemes. These
stability results mean that numerical computation of
solutions to mixed problems will be at least unreliable
and at worst impossible. Further, it is easy to show
that the total variation diminishing (T VD) property that
schemes such as the Lax-Friedrichs and many other
more complicated methods enjoy is now no longer op-
erative. Thus oscillations and overshoots may be ex-
pected.

Some discussion of the relevance to TVD methods
to two-phase flow calculations is necessary here. The
development of TVD and other related methods in the
past few years has lead to great advances in the nu-
merical solution of hyperbolic probiems, and it is now
possible to capture shocks and contact discontinuities
with great accuracy at a reasonable computational cost.
(See, for example, Refs. 23-25.) It is also true that
TVD methods remove many parasitic oscillations that
are produced by standard second-order methods such
as the Lax-Wendroff scheme. It should be remembered
however that TVD methods (a) are only guaranteed
oscillation-free for linear equations (smali overshoots
and oscillations are regularly present in the solutions
of nonlinear problems), (b) do rot necessarily produce
the correct entropy solution,?¢ and {(c) are not appli-
cable to mixed problems, since they require consid-
eration of the eigenvalues and the eigenvectors, which
may be complex. So while TVD methods work very
well for solving hyperbolic problems, they are of little
use for mixed problems. This means that for the nu-
merical computations shown below, we are forced to
employ a very simple methed.

As a final comment, we note that although the out-
look for the performance of standard finite difference
methods is somewhat pessimistic, the situation is not
completely hopeless. The stability analysis has shown
only that there might be regions where the scheme
becomes unstable. We have to hope that such modes
do not enter our calculations. There is also the pos-
sibility that it might be possible to develop numerical
methods for mixed problems that are capable of iden-
tifying these modes and damping them owt. This is a
topic of continuing research, but since this study is
concerned with the status of standard calculation meth-
ods for mixed problems, we do not consider such meth-
ods further.

Numerical results

Having commented on both the modelling and numer-
ical analysis of two mixed systems of conservation
laws, we now wish to show that, while it is possible
to solve mixed problems numerically in some circum-
stances, extreme care is required in interpreting the




results. Some comments are apposite concerning the
numerical method that was used for the calculations.
For all of the results described below, the equation

w, + F(w), =0

was discretized simply as
witl = Hwi.; + wi )—“@—(F" - Fz_y)
|2 Wit 1 —1 Dl R -1

Some of the reasons for using the extremely simple
Lax-Friedrichs method were mentioned in the previous
section. Additionally, it is worth noting that the method
is monotone, first-order, and TVD,; so for totally hyper-
bolic systems of equations we are guaranteed to pick
up the weak solution that also satisfies both Rankine-
Hugoniot and entropy conditions. Also, although we
realize that in normal use the low-order accuracy of
the method would produce unacceptable smearing of
the shocks, in this case we are prepared to use 2 large
number of mesh points (1000 for all of the results given
below) and a high Courant number € = max {(A)dt/dx
(chosen to be 0.9 for all the computations) so that the
shocks are captured cleanly. Another convenient prop-
erty of the method is that it is symmetric, so we do
not have to worry about the direction in which the
shocks and rarefactions are travelling. Finally, the
method is extremely simple This is important because
we would not like our numerical conclusions to be
clouded by the use of a more complicated method.
Considering first the numerical solution of various
Riemann problems for equations (2), results are shown
for the ““‘membrane™ dividing the two initial states of
the Riemann problem situated at x = 0.5. In all of the
figures, both the profiles of the spatial variation of the
variables and the phase space portrait as the flow evolves
may be seen. For the phase portraits we have followed
the idea of Bell et al.,?” who carried out Riemann prob-
lem studies on a system of conservation laws pertaining
to the three-phase flow of oil, water, and gas in a por-
ous medium by indicating individual points of phase
space that have been passed through with a symbol as
well as aline In this way the shocks are obvious, since
the symbols are individually recognizable. For the rar-
efactions, however, the line appears virtually contin-
uous. Figure 2 shows the computed solution to the
Riemann problem at time ¢ = 0.2, where w, = (0, —2)7
and wy = (0, —5)7 € region 3. The numerical solution
is excellent, with the 1-shock/2-rarefaction structure
- clearly visible. It may easily be verified numerically
that the Rankine-Hugoniot and entropy conditions are
all satisfied. Solutions may also be calculated very suc-
cessfully when the'right state is in regions 1, 2, and 4.
Now consider the case in which the right state is in
region 5. Figure 3 shows two examples of this at time
t = 0.1 for right states of (— 4, 137 and (— 4, 1.25)7 {left
state wy = (0, —2)7). For the first case the numerical
solution is close to the analvtical one, but a nonmon-
otonicity is clearly visible in both variables. For vy =
1.25 the situation has become much worse. Severe
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Figure 2. Profile plots and phase diagram for w, = (0, —-2)7,
wr in region 3 at time ¢t = 0.2

oscillations are now present, and although the solution
is still recognizable as being the one predicted by the
theory, there are now many outlying points in the phase
plane diagram that spoil the solution. In Figure 4 we
consider the right states wr = (2,6)T and wy = (5, — 1)7,
results being given at time 7 = 0.1, When necessary,
we have also used the results of proposition 1 to keep
the numerical solution under control. The expected
solations are well resolved and have clearly structured
phase portraits.

Figure 5 shows two examples of the numerical so-
ution when the left state is taken to be w; = (0, 2).
First, we consider the case wg = (2,37, where the
solution contains a split shock, a stationary shock, and
a 2-shock. The other case corresponds to wg = (0, —35)7,
so the initial Hugoniot curve is disconnected from the
left state. In both cases the numerical solution is at
least recognizable, though naturally the scheme ex-
periences some difficulty in predicting the stationary
shocks. Some oscillations are also present, but agree-
ment on the whole is tolerable. .

We now turn to the solution of the system (3). Once
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again, 1000 points were used for the calculations, the
Courant number was fixed at 0.9, and the ‘““membrane””
was situated at x = 0.5. Figure 6 shows computations
made for a Riemann problem with left and right states

0.1 0.05
0.5 0.5
wr,=1 - 5.0 Wi = 5.0
2.0 2.0
0.214286 0.128571

so that both states lie in the region where all of the
characteristics are real. Both the profiles and the phase
portrait in (g, V?)-space are shown at time ¢ = 0.03.
The boundary between the region containing two com-
plex eigenvalues and that containing all real eigenval-
ues is shown as a solid curve. It is apparent that the
wave structure is very plausible. As in standard gas
dynamics, the density exhibits two shocks and a ‘‘con-
tact”” discontinuity (somewhat smeared by the numer-
ical scheme}, and the pressure shows a wave system
that consists of two shocks but no contact disconti-
nuity. The phase plane portrait also seems quite nor-
mal, with no trespass into the complex characteristic
region. There is also some evidence of a rarefaction
wave structure close to the right state, but this is not
clear enough to.comment on with any degree of as-
suredness. - .

In Figure 7 the left state and right states were chosen
as

0.05 0.05
0.5 0.5
wr = 5.0 Wy = 5.0
2.0 2.0
(1.642857 0.128571

so that while the right state was in the region of real
characteristics (at the point g = 0.1, V2 = 3), the left
state was in the elliptic region with g = 0.1, V¢ = 1.
Resaults are again shown at £ = 0.05, and now the wave
structure is much more complicated. The left state seems
initially to undergo a rarefaction in which the pressure
drops but the gas velocity rises. This is followed by a
triple-shock system. A nonmonofonicity is observable
in the pressure and the gas velocity between the second
and third shocks. Although some elements of the nu-
merical solution are not quite clear, in general the com-
putations seem plausible.

Figure 8 shows a case in which the left and the right
states are given by

0.64 0.05
0.2 0.3
Wy = 5.0 Wg = 6.0
2.0 2.04
5.14286 0.128571
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Figure 6. Two-phase flow" Profile plots and phase diagram for

an example in which both states are in the totally hyperbolic
region

so the left state is in the elliptic region and the right
state is in the real region. This problem may be thought
of as a fairly realistic test problem in which a ‘‘hot
wave”” impinges on a two-phase system with inifially
uniform velocities. It should be noted that these phys-
ically reasonable data lead inevitably to a boundary
state in the elliptic region. Indeed, if we were to con-
sider any problem in which both phases were initially
at rest, the model would have to admit phase paths
that either entered into the efliptic region or took the

unlikely course of penetrating into the totally hyper-
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bolic region via the axes V> = 0 and then ¢ = 0. Here
the numerical results give cause for concern. The phase
space portrait looks extremely sispicious, and the
pressure profile in particular seems to be unphysical

Our worst fears are confirmed by Figure 9, in which,

using the same left states as in the calculations for
Figure 8, we consider a right state

wr=wy +&1,1,1,1,1)7T (e<<1)

These data constitute a test of well-posedness, for it
would seem very reasonable that for two states close
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Figure 8. Two-phase flow: Profile blots and phase diagram for
another example in which the left state is in the elliptic region
and the right state is in the totally hyperbolic region

together the solution remains close to the left and right
states. For the computations of Figure 9, € was taken
to be 0.01, so the states started off very close to each
other. The development of the pressure and density
profiles is shown, as is the phase diagram at time t =
0.15. The ill-posedness is clear, and a bizarre shock
and rarefaction structure is developmg and growing in
time. There could be no possible physical justification
for such results. It is also interesting to note from the
phase diagram that one of the portions of the phase
curve seems to be trying to plot a path along the ¢ and
V2 axes where the characteristics are real. If the com-
putational mesh is extended farther along the x-axis,

fil-posed conservation laws: A. D, Fitt

then the curious shock system continues to grow in
amplifude and develoP ever more components. Even-
tually, after a great Iength of time (many thousands of
time steps) the growth is such that the pressure be-
comes negative and computations cannot be contin-
ued. The phase paths wander ever farther along the
g-axis in the phase diagram, and the convolutions be-
come more and more complicated. It is interesting to
contrast these results to those obtained for three-phase
oil recovery flows® in which the elliptic region was
closed in space so that such pressure profiles could
not grow unboundedly in amphitude.

We have also made calculations similar to those in
Figure 9 but with the left state in the totally hyperbolic
region. As expected, the solution remains at all times
close to the initial data.

Conclusions and discussion

Having examined the numerical and analytical prop-
erties of the two sets of equations discussed above, we
are now in a position to comment on the future for the
numerical solution of mixed problems. To begin with,
we have shown that although the inclusion of some
numerical viscosity will always help a numerical scheme
to perform a little better when it is applied to a mixed
problem, viscosity does not constitute a universal cure
to all the problems of mixed systems. In fact in a large
number of cases the successful solution of such prob-
lems is a somewhat arbitrary affair and requires no
little amount of luck to ensure that errors that are likely
to lead to exponentially growing solution components
are never introduced into the calculations. The situa-
tion is especially bad when the system in question is
large and complicated so that there is no hope of gain-
ing much analytical information about the components
of the solution that we might expect to encounter. On
the positive side, we have seen that surpnsmgly good
numerical solutions have been obtained in some cases.
We therefore conclude that although numerical com-
putations for mixed systems are not out of the question,
extreme care must be taken and all results regarded
with caution.

Itis possible that in the future, specialized numerical
methods will be developed specifically for mixed prob-
lems that are able to filter out unwanted parasitic waves.
Although such mixed TVD methods could lead to in-
creased reliability and convenience, the underlying ill-
posedness of the problem when any of the elliptic
regions are entered and the infinite time boundary con-
dition that is then required will always militate against
the totally satisfactory numerical solution of mixed
conservation law systems.

Also, it has been shown that mixed systems cannot
be justified by the simple statement that two states in
totally hyperbolic regions are guaranteed never to stray
into the nonhyperbolic region. Although it is conceiv-
able that there are mixed systems that are ‘‘correct”
as far as the mathematical modelling is concerned and
in which physically sensible initial and boundary data
will mean that the nonhyperbolic regions that are pres-
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Figure 8. Two-phase fiow: “Well-posedness” test in which both states are close to each other in the elliptic region

ent in the theoretical phase space will never in fact be
encountered, there are also evidently examples in which
this is not true. Taking the two-phase flow equations,
for example, it is clear that any physical experiment

retical role to play and those in which the appearance
of elliptic regions is*a severe fault of the model.
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