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1. Introduction

The problem of how to treat flows in which there is more than one phase present has
long been a difficult one. Recently interest has increased in such flow problems, notably
in the nuclear power and defence industries where multiphase mixtures are commonplace.
By ‘multiphase’ here we mean flows where the multiconnectedness or complexity and
unsteadiness of the interphase bourdaries. makes phase ‘tracking’ impractical

In the past a popular way of proceeding has been to average the equations in some way,
introducing some form of void fraction function which indicates how much of each phase
is present. Unfortunately the progress from generalized single - component equations to
‘two - phase’ equations has proved to be littered with problems (witness the controversy
in [6]). These difficulties frequently arise from insufficient generality of the basic equations
of motion, failures in the averaging procedure, or a neglect of important quantities Very
often in the past the result has heen a set of conservation laws which possesses complex
characteristics, The consequences of this are severe. The Cauchy problem becomes ill-
posed, and any attempt at a numerical solution to such sets of equations is likely to suffer
from exponential instability and other problems. Additionally, some of the best methods
for shock capturing (for example the method of random choice [2]) and other robust implicit
schemes (for example the implicit MacCormack method as described in {7]) cannot now
be used at all, as they all rely on the existence of real characteristics From many angles
therefore the appearance of complex characteristics is highly undesirable.

Solutions to these shortcomings of the equations have varied in their ingenuity and
physical teality, ranging from the completely artificial where terms in the equations giv-
ing rise to complex characteristics are ignored) to the more considered but still dubious
piecemeal addition of extra terms to certain equations. What is really required however is
& more general approach to the modelling of the problem, carried out in such a way that
the assumptions which have been made can be clearly appreciated and justified

In some ways the ‘moral’ of the present study ® is a pessimistic one. The theory tells
us that two - phase flow is cssentially a MODELLING problem, and the modelling will
change for different flows It is too much to hope that a single set of simple equations
will suffice for all two phase flows Instead we must proceed from a GENERAL set of
equations, and use modelling skills, combined with suitable small parameter analysis to
indicate which terms should be included in the final equations of motion which we wish
to solve to determine the fiow. If we are unable to accomplish this, then the fault is
with the modelling {for example, insufficient knowledge of turbulent effects) and not the
basic equations themselves. It is also worth stating that most of the initial development
of the equalions of motion is very similar to that carried out in [3] Both ensemble and
cross-sectional averaging procedures are used before the gas/particulate flow regime is
examined

1A fuller version of this paper will be submitted to Int J Multiphase Flow
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2. General Equations for Two-Phase Flow and their One-Dimensional Interpretation

Because of the anticipated sensitivity of the modelling, we begin consideration of two-phase
flow equations from a suitably general viewpoint. This entails proposing equations for each
phase separately, before averaging. Using standard theory, the equations of motion and
associated jump conditions for each phase may be written

(1) %(pz:) +V(paE - T)=pf, fi=pE(g—q.)+Q) Rl

Here p represents the phase density, ¢, the interfacial velocity, f; the interfacial source
density term and 7 the unit interface normal, The divergence term is to be suitably
interpreted depending on whether its operand is a vector or a scalar. We then develop the
equations of motion for each phase by suitably choosing the variables in (1).

Accepting now that to use the above equations separately for each phase would invelve
an unmanagable amount of inierface tracking, we must now consider how to average
the equations. First, we employ a (fully three-dimensional) standard ensemble averaging
process where the average of a quantity f is given by

7= i)

where M is the total probability space and the measure m{w) represents the probability
of observing state w. Since more than one phase is present, we cannot assume that
the derivative of f will be equal to the average of the derivative of f. Instead, phase
indicator functions must be introduced (see [3]) Using these, and various other properties
of the averaging operator, it is possible to propose general three-dimensional averaged
equations. It is also possible to include the effects of fluctuations such as turbulence, but
for the purposes of the present study these are ignored. At this juncture, we could start
to specialize to the particular regime of gas/particulate flow, but first we simplify further
by employing quasi one-dimensional assumptions and area averaging, For any variable [
which has already been ensemble a,veraged we define

< f(=,1) / A(I)f

where A(z) represents the cross - sectional area of the channel at ordinate x Again,
standard averaging results may be used (see, for example [4]), and the cross-sectional
average of the general conservation law becomes

akpqu(E ) 1 L o
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Now choosing E,J and f as usnal and resolving the momentum equation in the axial
direction gives six equations of motion, three for each phase.

3. The Modelling of Gas/Particulate Two-Phase Flows

We must now consider how to model specific terms in the equations of motion This
modelling must reflect the exact nature of the flow which we are considering; if we do not
make the correct assumptions we cannot expect fo end up with a hyperbolic system.
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Firstly, we assume that A(z) = constant and neglect all purely algebraic source terms
since these cannot affect the hyperbolicity of the system. Next, we assume that phase
1 is a (compressible) gas phase, and phase 2 an {incompressible) solid phase which is
dispersed in the form of ‘blobs’ within the continuous phase 1. The gas phase is assumed
to be a Newtonian viscous fluid, and the particles of the solid phase are regarded as being
composed of highly viscous fluid, but with no displacements inside any parts of phase 2 so
that the stress tensor has only pressure components Further, the particles are assumed to
be so dispersed that there can be no stress created between neighbouring solid particles,
and collisions are neglected. Then within each solid particle the pressure p; is constant,
and depends on the pressure in phase 1. To model the interfacial momentum and work
terms it is normal to separate out the pure interfacial terms from the mean flow terms.
This introduces the interfacial pressures py; and py; which we assume are related to the
bulk pressures p; and p; via some inviscid flow calculation. The incompressibility of the
solid phase requires that p; = pi; = pai, and to relate p; to these pressures we use the fact
that for inviscid flow streaming with velocity V past a sphere of radius e it is easily shown
(see, for example [7]) that the pressure on the surface of the sphere will have the form

1
P lr=a= Poo — §PMV2F(9)

where po, and po are the pressure and density respectively far away from the sphere and 8
is the azimuthal angle. This leads fo the introduction of an ‘interfacial pressure coeflicient’
C, which remains when all the §-dependence has been averaged out

The bulk added interfacial terms, representing many of the forces which have heen
averaged out, must also be considered. A careful non-dimensionalization is needed here in
general to decide which of these terms must be retained. In the present study, only the
virtual mass and drag terms are important. Following [1] we use 2 standard virtual mass
term and assume that the drag is proportional to the square of the relative velocity The
jump conditions allow the interfacial terms relevant to one phase to be inferred from the
other

It remains to consider the gas phase energy equation Assuming no heat flux and a
standard relation between the interfacial work and interfacial momentum transfer, and
closing the system with the standard perfect gas law, the final ‘working equations’ are

(cap ki + (@iprur)e = 0

(02): + (azug), =0
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Here subscripts refer to phase number or differentiation, o is the void fraction, (oo +
oy = 1), p represents density, u velocity, p pressure, e is internal energy, C, and Coum
are respectively the drag and virtual mass coefficients, and Cy, Cuz and Cly are prefile
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parameters in the momentum and energy equations.

4. Hyperbolicity Analysis of the Equations

‘We must now analyze the hyperbolicity of the working model. 1t should be emphasized that
in order to accomplish this task in any reasonable length of time, a symbolic manipulator
{MAPLE was used in the calculations reported below) is essential. Indeed, it is fair to
say that before the advent of such algebraic computation systems the calculations below
would have been weil-nigh impossible to perform. Before dealing specifically with the
gas/particulate flow case, we note a number of other special cases

4.1 Case 1: Constant-pressure model, no added terms

The model with p1 = p2 = p1; = p2:, Cui = Cuz = Caq = | and Clyy = € = 0 has long
been used for the modelling of many different two-phase flows The hyperbolicity result
here (see [5]) is that the eigenvalues are A = u; and A = y¢ + u; where y is a root of the
quartic equation

y o2Vt (V1) +2Vy -V =0

and & = vp/p,V = (uzs —w1)/c, g = caprf{capz) Four real roots exist if and only if
V2 > (1 + ¢5)° Hence the system is totally hyperbolic only for large enough relative
speeds.

4.2 Case 2: Bubbly Flow

One model for bubbly flow, where we assume that phase 1 is an inviscid fluid, and phase
2 is composed of incompressible gas bubbles is similar to the working system, but reguires
no energy equation. With gy = constant, we find that there are two zero eigenvalues, and
the other two satisfy a quadratic equation We can analyze this by setting e = pafp € 1

Then the leading order quadratic exhibits no dependence on .z For typical values of say
Cym =1/2,Cy1 = 1, we find that the condition for real roots is

—40516'52 + 40:?6} — 6o Cs + 20, + 2&{’ —3a: +1 <0,

so that for O = 0 the roots are real so long as 1/2 < o < 1 For non-zero values of C, the
range of values which a; may take INCREASES. In other words the inferfucial pressure
term helps the hyperbolicity Physically, it seems very reasonable that the modelling should
set a limit on the size of ay

4.3 Case 3: Gas/Particulate flow with added terms

Now we consider the working equations A MAPLFE calculation for the full system yields
& very large determinant with nearly a thousand ferms Suppose however we decide to
ignore the effects of profile parameters for the present and set Cyy = Cuz = Cep =1 The
main difference between the present case and the bubbly flow considered above is that
here the density ratio is large, as we assume that the density of the solid is much greater
than that of the gas setting e = p1/p2 <€ 1, we find that to first order the eigenvalues are
given by A = w3, 1, up and the roots of a quadratic with discriminant

O‘Em(p}/ - 1)2(?"1 - u2)2a:§ “+ 4-(32&1 (Cl‘lo,_,m + g — Cnm)

Hence the conclusions here are totally different from bubbly flow: As usual the hyper-
bolicity of the system is guaranteed for large enough relative velocities, but otherwise we
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have hyperbolicity only when o

14+ Com

Thus in gas/particulate flow, the interfacial pressure term does not help the situation C,
does not appear to lowest order. Moreover, the extra virtual mass term can have a bad
effect on the hyperbolicity, since for Cys = 0 the system is hyperbolic, but for Cum = 1/2
for example we require ey > 1/3. Clearly further analysis is needed of the gas/particulate
flow case. One way of proceeding is to note that for all cases considered so far, the biggest
threat o hyperbolicity seems to arise for low relative velocities. Accordingly we analyse
the case where uy — ug and ¢ =  say is not nessecarily small. Now the eigenvalues are
given by A = uy (three times) and the roots of a quadratic with discriminant

oy >

A0 P ar{rCoym — Com — 1} + Com )(03(r — 1) — ro1 + 7C0)

Certainly for Com = 0 the system is hyperbolic, but for Clum = 1/2 for example (a reason-
able value) the hyperbolicity requirement (for r <2 /3) is

1

ay > .
173y

5. Conclusions and Possibilities for Further Work

In this short study there has only been time to indicate how to proceed and to analyze
some simple cases. The conclusion for gas /particulate flow is that more terms are needed
in the model Both profile parameters and fluctuation terms have been totally ignored.
Also, for internal ballistics flows of the type which we ultimately wish to study, interpar-
ticulate stresses and collisions may be important Clearly, much work remains
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