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Summary. We examine specific asymptotic and numerical aspects of a mathemati-
cal model for determining the dryout point in an LMFBR. By considering a paradigm
problem we show that regularisation is essential for the calculation of accurate nu-
merical solutions.

1 Introduction

A typical modern nuclear reactor consists of two key components: a fuel el-
ement and a boiling heat exchange component. Nuclear fission and energy
conversion take place in the former, where the heat generated is transferred
to a coolant. Heat is then transferred from the coolant to water in the boiling
component where steam is produced to drive turbines that generate electricity.

A key factor that differentiates between various reactor designs is the type
of coolant used. In a Liquid Metal Fast Breeder Reactor (LMFBR), 2 liquid
metal (sodium is a popular choice) is used as the coolant. Such reactors can
operate virtually unpressurised, which has the advantage that in the event of
a Loss Of Coolant Accident (LOCA) the spread of contaminated material is
minimised.

Bundles of steam generating pipes form the boiling component of a LMEER.
‘Water pumped through the pipes is heated by the counter-current flowing lig-
uid metal in the outer pipe casing After entering as & Hquid, the water starts
to vapourise, forming a two-phase mixture of water and steam. This gives rise
to a range of two-phase flow regimes. In this study we wish to consider the
annular flow regime that, is established directly before the water turns entirely
to steam Annular flow is the predominant regime in a IMFBR. pipe and is
characterised by a relatively slowly-moving continuous liquid film surrounding
a core of fast-flowing gas. The mass transfer in this region is dominated by
evaporation of the thin liquid film at its free surface.
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The annular fow region terminates at the so-calied “dryout point”, where
corplete evaporation of the liquid film occurs. At the dryout point the pipe
wall temperature increases sharply since the thermal conductivity of the gas
phase is much less than that of the liquid phase. If dryout and rewesting occur
periodically, thermal stresses may be set up in the wall which could iead to
cracking of the pipe. A good understanding of the mechanics of dryout and
the location of the dryout point is therefore essential if one wishes to predict
the lifetime of steam generating pipes.

2 Mathematical Model

Space permits only the briefest of descriptions of the mathematical model for -
the dryout point (for fuller details see [MphOO]}. The assumptions inheren -
in the model include (i) that the flow is two-dimensional and steady, and
lubrication theory is valid in the liquid layer (ii) that the gas Reynolds’ number
is large (iii) that the wall temperature is constant, the liquid is superheated
and the mass transfer is determined by a Stefan-type problem and (iv} that

the interaction between the fast-flowing gas core and the wall layer may be -
described using classical thin aerofoil theory. All of these assumptions may be |
justified using typical LMFBR data. The final result is the (non-dimensional
NLSIDE (nonlinear singular integro-differential equation) valid for 0 £ 7 < 1:

7.3 1z 72 =
SR
3\, £—Z z 2 /i h
Here subscripts denote differentiation, non-dimensional quantities are writte
with an overbar, and the bar through the integral denotes a Cauchy principal -
value The quantity § = €3 Lpoo U2, /(ull) ~ 1.5 characterises the relative:.
importance of the pressure variations in the gas core to those in the liquid '
layer. h(Z) denotes the fluid layer height, ¥ is related fo the shear stress
exerted by the gas layer on the liquid and 7 characterises the strength of the °
evaporation. The small parameter e denotes the aspect ratio of the fiuid layer,
Oos and Uy are respectively the density and speed of the frée stream, L g
the (unknown) length to the dryout point and p and U are respectively the
dynamic viscosity and typical speed of the fluid layer.
Boundary conditions are required for (1). Proceeding on the basis that an
nth order NLSIDE normally requires 7+ 1 boundary conditions (one for each -
order and an “inversion” condition) we assert that :

R(O)=1, R{(1)=0, A{0)=0 (2)

§§ (E]{; Ef_g)dg)f - H—:F =0. ; ok
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The first two of these conditions reflect the éeometry of the problem, and the
third insists that the pressure is finite at the onset of annular flow. The final
condition (3) expresses the fact that the mass flux from the liquid film must
be zero at the dryout point. One further boundary condition is required to
determine $he length L to dryout; we shall asszme here that the pressure pgo
is known at the onset of annular flow # = 0 (& condition that is equivalent to
prescribing the total mass fiux in the pipe). Thus (in dimensional variables)

. é.'5’t:~oU§o ' E’E (6)
Pg0 = Peo + - ]£ £ dg. (4)

3 Paradigm Problem

The NLSIDE (1) with the boundary conditions described above presents an
extremely difficult numerical and asymptotic challenge. For the remainder of
this study, therefore, we will not consider (1), but instead concentrate our at-
tention on a paradigm problem constructed fo allow some simple analysis to
be carried cut Specifically, we shall make the (physically untenable) assump-
tions that 7 ~ 2075Zh~% and 7 ~ nihE and ignore the A®/3 term multiplying
the singular integral term in (1). The problem then becomes

(GJ[ ?5—(2@)5 - ) =~ (5)

where 5§ and 7} are constants This paradigm problem may be solved in closed
form. By integrating and using the obvious analogous “mass flow” condition
to (3), we find that

(2 f #8) -mo=n-a )

Tty -

T

Further rearranging, integrating, inverting using standard methods (see, for
example [Mus33]), applying the houndary condition A/(0) = 0 and finally
integrating again and applying 2(0) = 1 and (1) = 0, we find that
Z(1 ~ %) o . 967 sinT'(22-1) 1
e {—16Kw +B(—24m — 8K + = | - =
(7)
where K = (4 —n)/2 It may easily be shown that (7) is the unique solution

h(z) =

o (5) that satisfies the conditions (2) and the analogous condition to (3);

we do not expect, of course that it will be possible to establish uniqueness
results for the solution to (1}. We may now use the extra condition {4) to

-determine L+ we find that

L=

= 16(peo — Poo) (&)

hofoc T2 2
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Even though there is no reason why solutions to the paradigrn problem should
mimic solutions to the full problem in any way, it is evident that (8) mirrors
much of the behaviour that we might expect from the solution to (1),

4 Numerical Solution of Paradigm Problem

We now discuss the numerical solution of (5). Many accurate and efficient
methods exist for solving LSIDEs (see, for example [AdLS0], [Gol78] and
[Kre75]), but they rely specifically on the linearity of the equation. We shall
therefore use a numerical method that generalises easily to the full nonlinear
equation (1). Very little theory is available regarding the rumerical solution
of NLSIDFs, so we proceed in an ad hoc fashion and solve (6) using a fi-
nite difference method. We divide the interval [0,1] into N equal subintervals
[€5,€i41) where 0 < j < N 1 and & = j/N and write (6) as

h&(«f}
o £€— a:

We then collocate at the internal half-mesh points and write

pz = {1g — )T +m Where 'p— -

_ Ditije

‘|‘ - —Pi-1/2
Y &y
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Pigaja = ][

and Zi1/s = (i + 1/2)/N We now assume that in each subinterval (&5, &1l
the derivative of h is constant, so that
hit1 —

2%+( &

(where d¢ = 1/N) and introduce the fictitions mesh point Z.;. A total of
N —1 equations are provided for the h; by (9) and three more come from the
boundary conditions that Ro =1, hy = 0 and h_1 = hy. All integrals may
now be calculated in closed form. The final collocation scheme becomes

=(-m)E+m (QA<iSN-1)  (9)

where -
_he(§)

s—df
£— Zit1/2
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N~1 T .
hk+1 hk (Qk — 24 1)2 _ * N *
kz=0 ( wdg? )m‘(2k—2i—1)(2k.—2i+3)‘ = (76 —ng)ids +n5 (10)

for 1 <4 < N—1 which, with the boundary conditions, gives an (N+2}x (N+2)
systemn of equations for the N = 2 unknown values of the h; Unfortunately,
though this scheme appears logical, it may easily be shown that in practice
a saw tooth instability pervades for all N and the scheme is quite useless.
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gn of numerical methods must be guided by

the paradigm problem (5) we
(1-z)"2asz — 1

Tor many NLSIDEs the desi
+he asymptotic properties of the solution. For
pote that the derivative of % becomes unbounded like
it is this feature of the problem that renders the previous numerical method

quired {see, for example [KT93]). We

aseless. Regularisation is therefore re
=1 and set

cedefine the variables so that the slope of h is finite &t

R(z)=H(y) where P=1-%

iving the regularised paradigm ecquation

. =
(1 He(8) dg) = —2(1 — (5 —m) — 20

mly &7

¥
#(0) = 0, H(1) = 1 and Hg(1) = 0. We may

with boundary conditions
1 method The analogous scheme 0 (10) is, for

now design a simple numeric

122 (B — F 1 (2k -2+ D)2k + 2+ D))
2i+1 (2k+2’i+3)(2k—2i—1)

1 (2k—2i+3)(2k+2¢—1) ) 2 12 .
=4 — - iy
21 \ (2% + 20+ 1)(2k — 20+ 1) Kidg(1 —°d€7) — 2iddno
with o = 0, Hy =1and Hy1 = Hy_1 This scheme is simple to implement

and gives very accurate results; for example, for thecaseny =1/2, 75 =1 the
nuumerical results are almost identical to the exact solution even for as few as
50 points. We conclude +hat for NLSIDEs with singular asymptotic behaviour

at the end points regularisation is essential.
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