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Fluid flow in the anterior chamber of a human eye
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A simple model is presented to analyse fluid flow in the anterior chamber of a human eye.
It is shown that under norinal conditions such flow inevitably occurs. The flow, whose
reduced Reynolds number is small, is viscosity dominated and is driven by buoyancy
effects which are present because of the temperature difference between the front and
back of the anterior chamber, In cases of severe eye trauma or as a result of certain
diseases and medical conditions, particulate matter may be introduced into the anterior
chamber The motion and distribution of such particles is analysed and it is shown that the
model is capable of predicting well-established and observed features that may be present
in a traumatized eye such as hyphemas, keratic precipitates, hypopyons and Krukenberg
spindles.

Keywords human eyes; buoyancy-driven flow hyphemas; hypopyon; Krukenberg spindle;
asymptotic analysis.

1. Introduction

Bye surgeons have long recognized the importance of understanding the minutiae of
processes occurring inside and around the eye. However, many aspects of fluid mechanics
within the eye have not yet been fully examined or quantitatively explained. Our objective
in this study is to examine, using simple standard fluid dynamical models, the details of
clinically observed flow in the anterior chamber which is caused by thermal processes. We
also aim to identify circumstances where such flow is relevant to various aspects of eye
disease.

Figure 1 gives a basic idea of the geometry and structure of the eye. Broadly speaking,
the front of the eye may be thought of as comprising two chambers, the anterior chamber
(between the iris and the cornea} and the posterior chamber (the region behind the iris and
anterior to the hyaloid membrane). A number of other important regions and components
of the eye are also identified in the diagram.
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FIG 1 The main components of a human eye in horizontal cross-section.

Flow in the anterior chamber of the eye is a well known phenomenon that has been
observed clinically. Ehrlich (1882) observed that systemic fluorescin {a water soluble
yellow dye which, when injected into the body, leaks from the iris blood vessels so allowing
flow visualization) tended to appear in the anterior chamber of animal eyes in a centrally
placed vertical line. Tt was suggested in Tiirk (1906, 1911) that this phenomenon may result
from fluid flow in the anterior chamber driven by a temperature gradient. Subsequently, the
general idea of anterior chamber convection appears to have been adopted in the general
literature. Although occasionally the subject has been revisited (see, for example, Wyatt
(1996) who concluded that anterior chamber convection was responsible for asyminetries
in pupil shape and placement during pharmacologic pupil dilation) to our knowledge no
attempt has yet been made to carry out a systematic fluid mechanical analysis of the
phenomenon,

Flow appears to take place in a single convection cell, rising (i.e. opposing gravity)
near to the back of the chamber and falling towards the front. There seems to be little
or no lateral movement of fluid. Although detailed experimental measurements do not yet
appear to have been made, anecdotal flow transit tires (the time taken for a finid particle to
move from the top to the bottom of the anterior chamber, say) of around one minute seem
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normal. The fluid present in this part of the eye is produced continuously by the ciliary
body. It flows through the pupil aperture in the centre of the back wall of the chamber. The
fluid may be assumed to be a linear viscous fluid with a viscosity, density and expansivity
identical to that of water. Fluid drains from the chamber through channels in the angle
between the iris and the cornea (the ‘drainage angle’).

The observed flow is driven by buoyant convection arising from the temperature
gradient that is present across the anterior chamber of the eye. This difference exists
because the temperature at the back of the anterior chamber is close to core body
temperature (37° C) whilst the outside of the cornea, which forms the front wall of the
chamber, is exposed to ambient conditions (say 25° C during the day when the eye is open)
The thickness of the cornea is typically 0-6 mun and its thermal insulation properties are
likely to be similar to those of water. The temperature of the inner suiface of the cornea is
therefore likely to be quite close to 37° C. The principal aim of this study is to show that
even relatively small temperature differences could give rise to the flows that are observed.

In isolation, the flow in the anterior chamber of the eye is not especially significant, It
may assume greater importance, however, in cases where particulate matter is present in
the anterior chamber. This may happen for a number of reasons: red or white blood cells
may be present as a result of a variety of diseases or conditions and in other circumstances
pigment particles may detach from the iris. Each different type of particulate matter may
give rise to distinct symptoms and medical problems that require treatment. Below we give
the basic details of the effects that each sort of particle may have.

1.1 Red blood cells

Red blood cells (erythrocytes) are not normally found in the anterior chamber of the eye.
Their presence indicates rupture of one or more of the blood vessels in the eye. Red cells
may exist in the anterior chamber in two forms.

(1) ‘Fresh’ red cells. These cells are normally less than 120 days old and retain their
enzymatic machinery for energy metabolism. They are thus able to maintain a pliable cell
membrane. Such cells have the form of plates, but can deform substantially when required
to do so. This allows them o squeeze through the trabecular meshwork in the drainage
angle with ease to clear rapidly from the anterior chamber. Fresh red blood cells may enter
the anterior chamber via the pupil aperture or from rupture of a blood vessel within the
chamber itself.

(i) ‘Ghost’ cells. These cells are typically much more than 120 days old. They have
lost their enzyme energy pathways and, due to membrane rupture, contain no haemoglobin
The cell walls have thus become spherical and rigid. These cells are not able to deform to
pass through the trabecular meshwork and tend to clog the drainage angle. Consequently,
fluid is unable to escape from the chamber and the pressure within the eye rises, which
may lead to blinding eye damage. Ghost cells always enter the anterior chamber through
the pupil aperture from a source in the posterior segment. They tend not to adhere either to
each other or to the walls of the chamber.

Detailed measurements of the density and size of erythrocytes are readily available in
the the literature; for example, Weatherall ef al. (1996) asserts that a red cell has a density
that lies in the range 1092-1100kg m™2 and a diameter of 6.7-7 7 um. The density of an
erythrocyte is given in Duck (1990) as 1089-1097kgm ™3 and in Lurie (1992) as 1090—




34 C. R. CANNING ET AL,

1106kg m~3, while Seeley er al. (2000) gives the diameter of a fresh red cell as 7-5 pm.
We have however been unable to find comparable data for ghost cells, For the remainder of
this study we assume for definiteness that the radius of a ghost cell is similar to a fresh red
cell, and is given by 3-5 pum, but the density of a ghost cell is higher than the corresponding
value for a fresh cell owing to cellular collapse and subsequent concentration. We therefore
assume that the red cells that we shall be considering have a density of 1500kgm—>. Tt is
worth pointing out that numerical experiments have confirmed that the details of the flows
considered below are altered only by small amounts if a different value for red cell density
is used.

Red blood cells may accumulate in large quantities and sediment to the bottom of the
anterior chamber forming a layer known as a hyphema (see Fig. 2). One of the aims of
formulating 2 quantitative mathematical model for aqueous humour flow in the anterior
chamber is to determine whether such flow might disrupt a hyphema. Presumably if the
flow is powerful enough then regions of a prospective hyphema cannot remain stationaly.
‘We shall show below that it is possible to calculate the theoretical maximum extent of a
hyphema.

1.2 White blood cells

Leukocytes (white bloed cells) may also be present in the anterior chamber of the eye.
The presence of white blood cells normally indicates that the patient is suffering from
uveitis (inflammation of the uveal tissues, and most importantly the ciliary body). This
inflammation may lead to damage in the eye and sight loss.

During ophthalmic examination, white blood cells may be observed as so-called
keratic precipitates (see Fig. 2). Each precipitaie is a round aggregation of white cells,
the aggregates typically being distributed in an approximately triangular shape. If these
precipitates accumulate in sufficient quantities then a white layer similar to a hyphema
may also form (a hypopyon).

The white blood cells present when uveitis occurs may be assumed to be spherical
(see, for example, Caro et al, 1978) and larger than the ‘ghost’ red blood cells described
above; diameters of around 10 zm are typical (Seeley er al (2000) gives diameter ranges
of 10-12 pum (neutrophils), 10-12 gm (basophils), 11-14 um (eosinopbils), 6-14 pum
(lymphocytes), 12-20 um {monocytes) for various forms of leukocyte) and such cells
will therefore be assumed for the remainder of this study to have a radius of 5 ytm. The
density of white cells appears to be similar to, but slightly less than, the density of fresh
red cells. In the discussion below we concentrate on the formation of hyphemas and
Krukenberg spindles If one wished to perform detailed calculations of the formation of
keratic precipitates and hypopyons, then the work of Cramer et al (1992) suggests that
a density of 1085-3 kgm™ would be an appropriate value to use. It should also be noted
that, in contrast to red celis, some white cells are ‘sticky”. They may adhere to one another
to form clumps and also (if they touch it) to the corneal endothelium (the inside surface of
the cornea). Entry into the anterior chamber of white blood cells is usuaily from the front
of the iris.

Optically, the sight of a patient is not usually affected by the presence of keratic
precipitates. When diagnosed, however, they provide a clear indication that uveitis is
present and treatment is normally required.
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1.3 Pigment particles

Pigment provides a third type of particulate maiter that might be present in the anterior
chamber of the eye. Though complete pigment cells {melanocytes) are not usually released
whole into the anterior chamber, melanin particles (‘granules’), which are much smaller
than blood cells, may be present in a variety of conditions (see, for example, Kuchle et al.,
1998 and Farrar & Shields, 1993). This presents us with a potential difficulty as there seems
to a dearth of well-doecumented information concerning the size distribution and density of
such particles. It is generally accepted that melanin granules are both much denser and
much smaller than either red or white blood cells. For the remainder of this study we
therefore assume that pigment particles have a density of 1700kgm™2 and are spherical,
with a diameter of 0-3 um. Experience suggests that, unlike white blood cells, pigment
particles do not easily adhere to each other. They do, however, possess sonie “stickyness’,
and may become attached to the cornea under some circumstances.

Though pigment may be released from either the front or the back of the iris, it is
known that most of the pigment present in the anterior chamber originates from the back
of the iris and consequently enters the chamber through the pupil aperture The diameter
of the pupil aperture i$ not fixed, varying both with light conditions, focusing and age. In
normal light conditions the aperture diameter is likely to be between 4 and 4.5 mm for a
young person, this figure falling to 2 mumn for an older subject. We therefore assume that the
aperture may vary between 2 and 6 mm, the latter figure being achieved for a young patient
in mainly dark surroundings.

Pigment particles may be released from the iris for a number of reasons, the two most
common being associated with short-sightedness and diabetes. Pigment release may also
occur after eve trauma (for example, if the eye has been struck by a foreign object), or
in the presence of PDS (pigment dispersion syndrome), a condition that is genetic in its
origins and is particularly prevalent in young males of Scandinavian origin.

From a diagnostic point of view, pigment can accumulate on the inner surface of
the cornea, forming a so-called Krukenberg spindle (see Krukenberg, 1899) (see Fig. 2).
Krukenberg spindles occur in a variety of positions on the cornea and may assume many
shapes; often the greatest concentration of particles occurs at the centre of the cornea. Since
the particle concentration by both weight and volume is very small, the patient’s sight is
not affected However, the presence of a Krukenberg spindle is normally interpreted as
a warning that the drainage mechanism of the eye may become slowly blocked. Some
patients presenting with a Krukenberg spindle may consequently develop pigmentary
glaucoma.

1.4 Fluid flow in the vitreous body

A number of reasons why flow in the anterior chamber may be important have been
outlined above. Before concentrating solely on this region of the eye however, it is worth
briefly mentioning that, under some (artificially induced) circumstances, thermally driven
flow may also take place in the posterior segment of the eye.

The posterior part of the eye is normally filled with vitreous gel that i5 optically
similar to water, being composed of about 99.9% H2O. The remaining 0-1% is composed
of a protein (present in long, thin strands), together with proteoglycans and GAGs
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FIG 2. Schematic diagram of visual appearance of typical instances of hyphema, Krokenberg spindle, keratic
precipitates and hypopyon (looking front on at the anterior chamber).

(glycosaminoglycans). This mixture plays a key role in determining the properties of the
vitreous. Although the details are complicated (see, for example, Fatt & Weissman, 1992),
the simplest model of the behaviour of the vitreous assumes that the large hydrodynamic
resistance of the GAGs endows the gel with an effective yield siress. This prevents any
bulk fluid flow in the gel under normal circumstances, though as the eye moves the gel
may be shaken and elastic waves may propagate through it. In a variety of eye diseases and
conditions (for example, retinal detachment) the gel needs to be removed (vitrectomy).
Ultimately, the gel is replaced by the same type of fluid that is found in the anterior
chamber. If a temperature difference exists between the front and back of the posterior
segment then convection might also occur here. The existence of such convection currents
is not widely accepted, although there is some supporting observational and anecdotal
evidence. We are currently carrying out (mainly numerical) work on this aspect of flow in
the eye; this will be addressed separately in another study
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We end this introductory section by reviewing our objectives. We aim to propose a
simple fluid mechanics model which shows how, under normal conditions, flow in the
anterior chamber inevitably takes place. The mode! should also be capable of predicting
the formation of a hyphema or a Krukenberg spindle. (We omit specific consideration of
the details of keratic precipitate and hypopyon formation.) Since obtaining qualitative and
phenomenological information is our prime requirement we shall eschew large, purely
numerical studies of the flow and wuse basic fluid mechanics and standard asymptotic
analysis to examine the flow.

2. A model for thermally driven flow in the anterior chamber of the eye

We consider flow driven by thermal effects in the front portion of the eye between the
cornea and the pupil Figure 3 shows a schematic diagram of the flow that we wish
to consider. We assume that fluid is contained between z = 0 and a solid (known)
impermeable boundary at the cornea z = h(x, y). This latter boundary is exposed to the
elements and thus its temperature is held fixed at Tp, say. (As noted above, the cornea,
which may be taken to have a constant thickness of 0 6 mm, insulates the anterior chamber
from ambient conditions to some extent, and so the temperature difference that is perceived
by the fluid in the anterior chamber will be reduced. T should therefore be thought of as
a ‘given’ constant rather than room temperature, for example ) At the pupilfiris z = 0, the
temperature is held fixed at 7] which we consider to be close to body temperature and thus
in excess of Tp. The patient is assumed to be in an upright position so that gravity acts
along the positive x-axis.

According to the classical Boussinesq model (for details, see for example Drazin &
Reid, 1981) for thermally driven convective flows, we assume that the fluid density p varies
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slightly with temperature, but negligibly with pressure. Thus

p = po(l — (T —Ty))

where T denotes temperature, pp is the fluid density at temperature Ty, and « is the
coefficient of linear thermal expansion of the fluid (which we shall take to be given by
the value for water at 30° C, namely 3 x 10~% K~! Batchelor, 1985). Because changes in
the density are assumed to be small, the variable p may now be replaced everywhere by
©0, except when it appears in the gravity term. The governing equations of motion are thus

p0(g; +{g V)q) = —Vp + povVig + po(l — (T — To))g (2.1)
Vg =0 (22)
k i
T, 4+ (g V)T = —VT + P (2.3)
P0Cp AOcp
De = 0. 24)

Here the fluid velocity is denoted by ¢ = ué; -- vé, + wé, where é,, &, and €, are unit
vectors in the x, y and z directions respectively. Subscripts denote derivatives, p denotes
pressure, ¢ denotes time and v, k, and ¢, respectively denote the fluid kinematic viscosity,
thermal conductivity and specific heat at constant pressure The viscous dissipation term
pove;je;j is denoted by &, particle concentration by ¢ and the infinitesimal rate-of-strain
tensor by e;;.

Although (2.1)—-(2.3) are standard, more discussion is required concerning the particle
concentration equation (2.4) We postpone this until a later section, and simply assume (a)
that ¢ evolves according to some linear operator I which will be specified later and (h)
that the particle concentration does not appear in the flow and thermal equations.

To proceed, we non-dimensionalize (2.1)-(2.3). Wesetx = Lx, y = Ly, z = €Lz,
u=Ul,v=Ub,w=eUw,i=(L/U),p=(povUL/h3)pand T = Ty+ (T; — Ty)T.
Here L{= 2a) and hq are respectively a typical length and height of the anterior chamber
in a human eye and € = ho/L We assume also that U denotes a typical flow speed.

Dropping the bars for convenience, we find that

ezRe(ut + oy +vuy + wity) = —py + ez(uxx + gy} g

Re
=1 — (T — T)T) (25)

Fr
ezRe(vt + uvy + vy + ww) = —py -+ €2 (Vyy + Vyy) + Vg (2.6)
elRe(w, + uwy + vy + wwy) = _% o Gz(wxx 1 wyy) + Wy @7
Uy + vy twy =0 (2.8)

1 1
Tt + uTx 1+ UTy - w.TZ = m (Tx_x + Tyy + ;ETZZ)

Br
€2RePr

+ (u% + vg) (2.9
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where the Reynolds, Prandtl, Froude and Brinkmann numbers are given respectively by

LU U2 U?
Re==2, pr=P2% g pr=_ 27
gL k(T — To)

, . 2.10)

and only the leading-order term in the viscous dissipation has been retained.

The non-dimensional parameters in (2.5)-(2 9) may now be estimated by using typical
values for a human eye- using kg = 2-75mm, L = 11mm, U = 10~* msec™! (an estimate
based on observation that will be verified a posteriori), v ~ 09 x 1076 m2s1, g =
98ms=2 and @ = 3 x 107K~ we find that, as far as the momentum equations are
concerned,

R
€2 ~ 006, Ree? ~ 0.076, 62—;&(1”1 — Ta) ~ 250(T1 — T).
.

To lowest order, thercfore, the traditional ‘lubrication’ assumptions are justified, and we
note additionally that only very small temperature differences are required in order for the
buoyaney forces to be strong enough to drive a non-trivial flow

The temperature equation may now be dealt with. We use standard thermal properties
of water at blood temperature and assume that since the temperature changes invoived
are small, thermal properties may be regarded as being constant. We therefore use
oo = 10%kgm™2, ¢, = 42 x 103Tkg 'Kt and & = 057Wm™ K™ (the thermal
conductivity of human aqueous was measured by Poppendiek et al. (1966) who give a
value of k = 0-578 Wm~! K~!) giving

1 B 10~11
~012, ———— ~2, r_ . 3x
RePr €2RePr €2RePr T —Ty

From this we conclude that the viscous dissipation may be ignored, and to leading order
the temperature is governed by Ty, = 0. Of course, assuming (2.2} to be asymptotically
large compared with (2.1) is dubious; almost certainly, however, this assumption will lead
to results that are qualitatively correct. We therefore proceed on this basis If the convective
terms in (2.9) were fo be included, then matters would be complicated significantly.
Tn particular, the x-momentum equation could no longer be solved in closed form and
the whole problem would have to be attacked numerically Since we seek qualitative
understanding of the flow we do not pursue this path

The final (redimensionalized) partial differential equations that we shall actually solve
will therefore be

_%’i + vitg, + g(1 — a(T — Tg)) =0 (2.11)
0
Py, =0 (2.12)
Po
pe =0 (2.13)
uy +vy +w; =0 (214)
T,, = 0. (2.15)

The boundary conditions are no-slip (¢ = v = w = O onz = hix,y), T = T; on
z=10,T = Ty on z = hx, y) together with conditions on the pressure at some poini(s)
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in the eye. Boundary conditions are also required for the velocity on z = 0, and these
merit some discussion: although it would be simplest to treat the boundary z = 0 as a solid
surface and impose a no-slip boundary condition there, under some circumstances this may
not be valid. Tn the normal course of events fluid enters the anterior chamber through the
pupil aperture and exits via the drainage angles at the boundaries of the cornea, the flow
rates balancing each other so that the total amount of fluid in the anterior chamber remains
constant. The fluid throughput is somewhat hard to ascertain, however. For the moment,
therefore, we simply assume that on z = 0 we have u = v = 0 and w = wyp(x, y) where
wqlx, ¥) is assumed known.

In order to verify that the flow through the pupil aperiure does not invalidate the
lubrication assumptions, the order of magnitude of wqg may be estimated by using the values
given in Bill (1984). He quotes a typical uveoscleral cutflow as 0-5 ul min~!, asserting
that this may account for up to 20% of the total vitreous body outflow. More recent
measurements reported by Brubaker (1996) suggest that aqueous production is diurnal with
an average value of 2.3l min—! (his specific measurements being 2-91 & 0-71ulmin !
(08h00-12h00), 2-66 % 0-581min~! (12h00-16h00), and 123 &= 0 411 min~" (OO0
06h00)). Taking an estimated typical value of 2.5ulmin~! ~ 4.2 x 10" m?*s~! and
a minimam pupil apertare radius of 1 mm leads to an average velocity of about 1.3 x
109 ms~!. Comparing this with a typical w = O(eU) ~ 2-5 x 107> ms~L, it therefore
seems likely that in all bui the most extreme cases (for example, abnormally high aqueous
production rates or very low temperature differences) (see Section 5) the How through the
pupil aperture will not contribute to leading order to the flow in the anterior chamber and
use of the full no-slip condition on z = 0 is justified. Nevertheless, for the present we shall
assume for the sake of completeness that wp is not zero.

Equations (2.11)—(2.15) may easily be solved. The temperature equation (2.15) yields

T="+ %(TO -T)
and (2.11) thus becomes
0= P54 vt + g 11— T — 1)1 — 2/ )]
0

This equation may be integrated twice with respect to z, and, using the boundary conditions
u=>0o0nz=0and z = h(x, y) we find that

2 2 3
Px 9 glthz =z hz z z
=" (z"—h == h—TInl—+ =~ — 216
i 2,001;(7‘ Z)+U[2 2+O¢(1 0)( 3+2 6h)] (210)

Similarly we find that

pe= 22 (2 gy (2.17)
2pov
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w— 1 it 2 + 1 2 2
= 2000 | \ 2 3pxx 2000 | \ 2 3p3’y

2 2
goozthy |1 e =Ty | z
- - — -1 . 2.18

pov I:4 + 6 442 o @18)

and

The pressure may now be determined by integrating the continuity equation from 0 to
h(x, y) with respect to z in the normal way" we find that

B p)x + (B2 py)y = —12pquww0 + %[2 +a(Ty — TN

We assume that a pressure datum is fixed by setiing p = p, say at x = —a. Then
subtracting off the hydrostatic pressure, by setting

a (T — Ty)

) ]+P(x,y), (219

P =pa+ & +a)geo [1—
gives the equation for P as
(h3 POy + (B Py)y = —12p0vw,. (2.20)

As we have seen, although the velocities have been determined for a general wy it is likely
that in most instances the flow through the pupil aperture may be ignored. We therefore
postpone consideration of non-zero wo until Section 5. With wy = 0 and P = 0 on the
anterior chamber boundary we simply have P = 0 everywhere, so that, in the absence of
any additional external mechanisms that might cause flow, the only important contribution
to the pressure is hydrostatic. Thus

a(h — 1)
pﬂpa+(x+a)gpo[l——2——* :
The flow is essentially two-dimensional, the motion in each slice y = constant being
independent of the flow in any other such cross-section and the overall flow being

parametrized simply by #(x, y). The velocities are given by

(h — Ty)gez
=2 (27— —h 221
o h)(z —h) 221
v=>0 (2.22)
(Ts — To)gaz?hye , 5 4
- _ Sl SV A 2.23
YW (z ) (2.23)
and since v = 0 a stream function v (x, ¥) (where as usual u = ¥,, w = —yr,) may be

introduced in the form

(T — Tp)gu 20z — )P

V="
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We may now examine the flow predicted by (2.21)—(2.23). We note first that for a given
x, 1 is maximized with respect to z when

z =h(1/2 £ ~/3/6) ~ 0:21h, 0-79h.
At this position

(T — Toygoh®/3
216v

| #max |=

Using values of g = 9 Sms2,v=09x100m?s" 1,k = 275mm and @ = 3 x
10~ K1, we find that

umax ~ (T1 — Tp)1-98 x 10 *ms~ ' K1 (2.24)
Alternatively, the average velocity (evaluated, say at x = () may be calculated, giving

2 fkfz et dz = (T1 — Ty)gah?®

| # |av= — 1920

- ~ (T — To)1-29 x 107 ms™ 1 K1,

Each of these results seems to concur both with experimental and anecdotal observations
and with our earlier non-dimensionalization.

Typical flow streamlines are shown in Fig. 4, where A(x, y) was taken fo be given
(in non-dimensional form) by A(x,y) = 1 — x? — y2 The streamlines along the slice
y = ( are much as expected, the flow rising against gravity near to the iris and falling
with gravity towards the outside of the anterior chamber. It is worth remarking that
detailed measurements of corneal shape have been made using a variety of experimental
procedures (see, for example, Cho & Cheung, 2000, Schmid et al., 2000, Diaz-Uribe &
Granados-Agustin, 1999 and Vos er al., 1997). The choice of corneal shape used in this
study was made for simplicity, but the model could easily be changed to incorporate more
complicated shapes if required.

Some further results of interest may be calculated now that the flow is essentially
known: the shear stress on the boundary z = 0 is given by

(T — To)gah(x, y)po
12

The negative sign occurs because the flow is opposing gravity near to the hotter internal
wall of the anterior chamber With the values used above we find that tp ~ —6.7 x
10747 — To)kem™ls 2K, It is tempting to speculate that this might provide a
mechanism for detaching more cells from the back of the anterior chamber of the eye,
thereby potentially worsening the problem of eye drainage degradation. Previous studies
of the role of fluid shear stress in detaching particles seem to suggest, however, that the
stresses required to cause detachment are orders of magnitude larger than those predicted
by our model, For example, Gerlach et al. (1997) observed endothelial cell detachment for
shear stresses between 0-51 and 1 53 kgm 1 s~ 2 and Vankooten et al. (1994) reported that
the endothelial cell retention of glass reduced from 85% to 20% as the fluid shear stress
increased from 8 8 to 26 kg m~! s~2. We conclude that it is unlikely that anterior chamber
flow plays a significant role in particle or cell detachment.

g = poviglx, ) = —
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FIG 4. Typical streamlines for flow in the plane ¥ = 0 within an anterior chamber with wy = 0.

It is also of interest to compare the flow-assisted transit time of a particle to the settling
time if no convection were present. Suppose that a solid spherical particle of radins ar,
vohume V;, densily g and mass m; moves under gravity along the x-axis in an otherwise
stationary flow. The Reynolds number Re,, based on a sphere radius g; = 5 ym and a flow
speed of 7 = 10~* ms~! is given by

a7

Rey=—— ~6x107%,

and Stokes’ drag law therefore applies. Thus

d?x dx
mr o = —bmpovar - + Vig(por — 0)
where x(¢) denotes the vertical position of the particle. Withu = dx/dt andx =u =0at

t =0, we find that

2a2gt(pr — po) . (po — Po)gariny [1 (—6ﬂpavarr)}
_ exp | OOVt

x(t) =
® 9pv 27 pav?

(2.25)

T

Using a particle density 1500kgm 3 and a fluid viscosity of v = 0-9 x 107 m?s™!, we
find that the time taken for a pariicle to settle from the top to the bottom of the anterior
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chamber (a distance of say 11 mm) is slightly in excess of 6 min. Comparing this to the
transit time calculated using (2.24), which for a temperature difference of 3° K turns out
to be about 18-5s, we conclude that the presence of buoyancy-driven flow increases the
effective mobility of particles in the flow by a factor of around 20. Although it is not
obvious exactly how important a result this is (presumably there will be some flow in the
eye anyway unless the patient is motionless for a long period of time), it seems that the case
is clearly made that thermally driven flow is important as far as the creation of a hyphema
or hypopyon is concerned.

3. The introduction of particulate matter into the flow

We now consider how particulate matter behaves when released into the flow Depending
on their type and the circumstances that cause them to be present, particles may be released
from the front of the iris, the pupil aperture, or at all locations on z = 0. We assume
that such particles are then set free to move in the flow. In modelling the motion of such
particles, we assume that they form a dilute mixture (so that they do not affect the fluid flow
and particle—particle interactions are negligible) with a particle concentration by volume
which we denote by ¢ (a typical concentration is denoted by co). More sophisticated models
could be proposed which treated the mixture as a two-phase flow; for this study, however,
we ignore such complications.

1t is now necessary to examine how the particles move in the flow. There are three
sources of redistribution of such particles- diffusion, convection by the fluid flow as
calculated above within the anterior chamber, and settling under gravity Balancing the
Stokes drag for a constant seitling velocity Ug against the buoyancy of a particle of density

Pr gives
6rpovlUsa, = %ﬂ(pr - .00),!5'61[«3
and thus

_ 2o po)gar

U
§ Qv

3.1

We may now determine whether or not the seftling velocity is important; examining the
ratio Ug/ U for U ~ 10~* m s~ ! and particles of various sizes, we find that for particles of
radius 4 um

Us _ 040 — po)

U 0
whilst for 0 5um particles

Us _6x 107 (o = po)
u Fell ‘

We conclude that though in general the seftling velocity must be retained in the problem,
we may anticipate that pigment particles, on account of their much reduced size, are likely
to behave in a manner rather different to that of red or white blood cells present in the
anterior chamber.
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Equation (3.1) determines Ug in terms of known particle properties, assuming
sphericity, and will be used henceforth. It is worth pointing out, however, that if more
information became available concemning the shapes of various particles, then (3.1) could
easily be modified. For example, Pettyjohn & Christiansen (1948) recommend that for
non-spherical particles the formula

_ 26(pc — po)ga;

U
§ 9oV

is used, where a, denotes the radius of a sphere of the same volume as the particle,
k = 0-8431log o (s /0-063)

and g is the ‘sphericity’ of the particles (the ratio of the area of a sphere of the same
volume as the particle to the area of the particle itself).

It is also appropriate to ask whether the use of a steady-state settling velocity is
reasonable. To analyse the approach to terminal settling velocity we use (2.25), which
shows that when a fraction A of the terminal velocity 2(o.— go) gaf /9ppv has been reached,

4
X = M[—A —log(1 — M)].
81v2p}
For particles of radius 4.em and a density of pr = 2pp say, and using standard values for
water this predicts that 99% of terminal velocity will be reached after a distance of about
10~? m, suggesting that the approximation involved in using the terminal settling velocity
throughout will lead to negligible errors,
We may now propose a model for the evolution of particle concentration The flux of
particles F at any point is given by

F=—DVe+qe+ Uscéy

where D is the diffusion coefficient of particles in water and ¢ is the fluid velocity given
by (2 21)—(2 23). The particle concentration therefore satisfies

c; +div(—DVe +ge+ Ugcé,) =0

We non-dimensionalize using the same scalings employed previously along with ¢ = ¢p¢
Dropping the bars gives

C; +ucy +weg + %Cx = %(Gz(cxx + Cyy) + o) 32)
‘To estimate the sizes of the diffusion terms in (3.2) values are required for D Complicated
models based on Nernst—Einstein theory could be proposed for D and accurate values for
this parameter will obviously be required if quantitative particle deposition rates are to be
established. For the present, however, we postpone such complications and merely observe
that for a very wide range of particles and solutions the diffusion coefficient in water is of
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order 1078 — 10~ m2 51 (see, for example, Lide, 1996). Thus (using D = 10~° m?s~!
and U = 10 %ms™1)

D -3

—_ o~

, ~ 0.016.
UL UL

The conclusions from this are much as one might expect: firstly, diffusion in the x- and
y-directions may almost always be ignored (and will be henceforth in this study) Motion
therefore still takes place in ‘independent slices’ y = constant. The conclusions regarding
diffusion in the z-direction are rather different; for although on time scales of the order
of one transit (top to bottom of the anterior chamber) time (calculated below to be about
18 5} this effect may be ignored, for times of order hours (which are cbviously clinically
significant) and above, diffusion is important. The general picture is thus one of particles
whose motion is dominated by a combination of settling and travel along streamiines,
but which are slowly affected by diffusion which spreads them out into the centre of the
anterior chamber.
The final (dimensional) partial differential equation to be solved is thus

¢+ (u+ Us)ex + wey = Degy (33)

where u, v and Ug are given respectively by (2.21), (2.23) and (3.1).

Fquation (3.3) requires boundary and initial conditions. (Though our main concern is
to determine steady-state solutions, the numerical method that we will employ involves
solving the unsteady problem.) We assume that ¢ = 0 at + = 0 and set either ¢ = ¢
(concentration given), c; = 0 (zero flux) or c; = ¢p (particle flux given) on the parts of the
iris or pupil aperture which respectively do or do not produce particles.

On the comea 7 = h(x, y), we assume that particles may or may not adhere to each
other and/or the surface of the cornea. For particles that do display a tendency to adhere, the
flux of particles that adhere is assumed to be proportional to the concentration of particles
already present, We therefore use the boundary condition

Fi=oc (3.4)

where # is the unit outward-pointing normal to the cornea and o may be regarded as an
‘adherence’ coefficient. In non-dimensional form, (3.4) becomes

(A + E(h2 + m2)VHED (e + hycy) — ehzhoUse — De;] = ochg.  (35)

When (3.2) was analysed, both of the terms Usg/U and D/ €2/ I, were retained; therefore
(3.5) becomes

—e2LUghyc — De, = ochy (3.6)
The final problem to be solved for the particle concentration ¢ is therefore given by (3.3)

with c(x, y, z, 0) = 0, either ¢ = cg or ¢; = ¢p (where ¢, may be zero) on z = 0 and (3.6)
on z = h(x, y).
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4. Numerical calculations of particle transport

We now seek to determine steady solutions to the particle concentration equation (3.3)
using a realistic geometry and boundary conditions.

We note from (2.21) that u is zero on the anterior chamber centreline z = h(x, ¥)/2 as
well as on z = 0 and at the cornea. This suggests performing a coordinate transformation
in order to map the flow domain onto a computationally convenient region. We first non-
dimensionalize the problem by setting ¢ = c¢o¢, x = a(2x — 1), z = hoZ, u = Uk,
w = (hoU/2a)%w and ¢ = (2a/U)t. Transforming from independent variables (X, 7y to
(X, Z) according to

- 2z
X=x, =———-1,
(%, ¥)
the problem to be solved becomes
- _ _ 4 _
¢ +Ucy +Wez = ﬁ(,’zz 4D

where

U=nxr—AR2Z(Z?>-1)
34 - AR
W= z—hhx(zz — 12— —5’9(1 +2)

2aD
_ A

= —
Uhj 48Uv

Ty — To)gaky Lo Us
= 250 o

?

The boundary conditions are

hepho
2Zeo

X, —1=1, ez(X,-1=0, or cz(X,-1}=
whilst on the cornea we have

cz(X, 1) = qc(X, 1)

where

hhg Ushohx
g1=;-{—-0—
2D 2a

A potential difficulty arises at the sides X = Oand X = 1 of the transformed computational
region. Since in general A(x, ¥) is zero here, the diffusion term becomes unbounded in
(4.1) and the standard numerical scheme described below cannot be applied. Moreover,
since each of the boundaries X = 0 and X = 1 have finite length in the transformed
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problem but represent the image of a point it is far from clear what the correct boundary
conditions are. For elucidation, we examine {4 1) locally (near to X = 0, say). We have

M1+ Dhx

U~ A, W~
h

and thus to leading order

_ A1+ Dhhy _
n ( _ ) XCZ

=0
czz AT
Therefore locally
Ahh
&= A+ Berf X117 4.2)
sr
where A and B are constant There are three separate boundary conditions on Z = —1

to consider, and three distinct cases of each, depending on whether sky tends to 0, a
constant or infinity as X — 0 Since all computations (see below) will be carried out using
h(x,y) = hy — ho(x? + y?)/a?, we shall consider only the case where iy — 0 (the
others may be analysed similarly). In this instance (4.2) implies that ¢ ~ A, whilst to
Jeading order the boundary condition on the cornea is ¢z = 0. For the case where ¢ = 1
on Z = —1 we therefore set ¢ = 1 on the boundaries X = 0 and X = 1. Since 7 is zero at
X = 0, the two cases where the boundary conditions at Z = —1 are ¢z(X, —1) = 0 and
&z (X, —1} = hcpho/2c are essentially the same, The conclusion is that it is not possible
to determine the actual value of ¢ in this case and instead ¢ must be made continuous along
X=0amdX=1asZgoesfrom—1tol

When v is non-zero, the model formulation is almost identical. If the equations are
non-dimensionalized for a fixed y using Ay = A(0, v) instead of k¢ then we find that the
problem to be solved is exactly the same as before, save for the fact that &g is replaced by
hi1in A, I, g1 and ¢ and a is replaced by the relevant semi-width in I" and g7 .

4.1  Nwmerical discretization

We discretize the problem using a simple explicit method, differencing the convective
terms according to the direction of the transport. For simplicity, we illustrate only the
problem of calcnlating the flow in the slice y =0 Theregion 0 < X <1, -1 Z < 1
is divided into a rectangular mesh with increments X = 1/K and §Z = 2/N say where
K and N are the total mumber of mesh points in the X and Z directions respectively. We
use a time step of size 8¢, and write ci‘n =¢(k8X,0,—1+k8Z, jdt) (The bars over non-

dimensional variables have been dropped for convenience.) We begin by sefting c:j;m =0
at all internal mesh points, then advance in time until the concentration reaches a steady
state.

For the main part of the flow where | S k € K —landl € € N — 1, (41)is
differenced using the explicit finite-difference method

A i 8t g J — j
Ckn = Sk T ﬁ(u (Ck,n - Ckfl,n) +U (Ck+1,n - Ck,n))




FLUID FLOW IN HUMAN EYES 49

A5t
(W+(kn Ckn P+ (ckn+1 Ckn))+hzazz(ckn+l chn+ckn 1)
4.3)
where
U wz0 [0 U0
10 U<y’ Tl U U<

and W and W™ are similarly defined.
At the top of the mesh, where If = A and W = —2ihx /h, the derivative boundary
condition gives upon introducing the fictitions mesh points c;; €€k -1

J J
CoN+1 T ChN—1
28Z

Applying the difference scheme on Z = 1 and eliminating the fictitious points therefore
gives

= (Xl y

j_ at ol j
CeN =C N~ kﬁ(ck,f\f =GN~ ﬁ(w kv~ Cen—1)

, : 45t
AW (] oy + (28Zq1(X) — Dy + 55

T Qc] y_y +20Zq1(Xe) — D ).

(4 4)

At the bottom of the mesh where Z = —1 the boundary conditions depend upon
whether a mesh point corresponds to a location on the pupil aperture or the iris and what
sort of concentration boundary condition is being assumed. At sites where it is assumed
that ¢ = 1 the conceniration value is known. At points where ¢z is known (whether it be
zero or given say by £} we note that & = A, W = ( and use fictitious mesh points in the
normal way Thus we have either

etl=0 45)

or

g Bt 48t
b =cly- 5X)L(ck0 Choro) + aygn 21 — 2600~ hFSZ).  (46)

The condition at the sides of the mesh where X = 0 and 1, depends, as discussed above,
upon the boundary conditions being used on Z = —1. Since the differencing is explicit,
when a Neumann boundary condition is imposed on Z = —1 we simply use a one-sided
difference. Thus for 1 < r < N — 1 we impose

(Dirichlet condition on Z = ~1):  ¢*! = ¢}, =1 47)
(Neumann condition on Z = —1) c{)? = C‘ljl, C}’:nl = C‘}’:]l - (4.8)
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The conditions for numerical stability of the simple numerical scheme (4.3)+4.5) or
(4.6) and (4.7) or (4 8) may either be established directly using standard means or by
making some obvious simple modifications to analyses for standard schemes. Using, for
example, an obvious gencralization to the result presented in Roach (1976), we find that
for stability the time step 8¢ must satisfy

1
<
LS 8r +um+wm
h28Z2  SX  8Z
where
hp =min | (X, Y) ]|, #p=max|uX,¥)|, wm=maxjwlX,Y)].

Since #, w and # are known before the computations are started, this requirement is easily
implemented. It is easily confirmed that the theoretical stability requirement is well borne
out in practice.

Coding was carried out in FORTRAN 77 on a P200 running Linux. In all computations
a time step of 0 95 times the theoretical maximum time step was used and a {dimensional)
corneal shape

h(x, vy = ho(1 — r?/a?)

was assumed.

4.2 Hyphema formation

Typical numerical results for the formation of a hyphema are shown in Fig. 5. A 41 x 41
grid was used to produce these results, which were calculated at 45 cross-sections of
the anterior chamber, A diffusion coefficient D = 10~%m?s~! was used and red blood
cells of diameter 3-5 um and density 1500kgm™> were assumed to enter from the
whole of the base of the chamber The adherence coefficient ¢ was chosen to be zero,
reflecting the fact that red blood cells are largely unsticky. The buoyancy constant A
was taken to be 10, implying a temperature difference between the front and rear of
the anterior chamber of about 2°C The calculations also used Ay = 2 75mm, whilst
the chamber and pupil radii were taken to be 5-5mm and 2 25 mm respectively. Using
po = 1000kgm 3, g =9-8ms > and v = 0.9 x 1078 kgm~! 57! gave a settling velocity
of Us = 148 x 10 5ms™} A typical time step for the calculation was about 107> in
non-dimensional time units and most cases required order 3 x 107 iterations to converge.
Two views are shown. The upper half of the figure shows a head-on view of the anterior
chamber, Particle concentration increases as the colour changes from dark blue through
green, yellow and orange to red; the dark red region indicates the area of maximum red
blood cell concentration The overall impression is very similar to what one sees in the eye
of a patient with a hyphema. In the lower half of the figure the same colour scheme is used
io indicate red blood cell concentration in a slice taken through the anterior chamber at
v = 0. We see that over most of the chamber particle concentration is relatively low, but
there is a sudden rise near the base of the chamber which gives a characteristic hyphema
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FIc 5 Numerical results for hyphema formation. Top: view from front of concentration on comea. Bottom: side
view of slice ¥ = 0 (concentration increases from dark blue through green, yellow and red to dark red) Note: in
the bottom view the very high concentration gradient around the upper corneal surface is not resolved perfectly
in the figore.

shape. The effects of the buoyancy-driven circulation are also apparent in the lower view.
We carried out a number of numerical tests with other parameter values; in each one similar
pictures were produced.

Though we have not included hypopyon predictions in the current study, it is evident
that the necessary calculations would proceed along similar lines, and, owing to the similar
properties of white and red cells, yield similar results. To predict keratic precipitates would
also be possible, though some submodel would have to be adopted to deal with particle
clumping.
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4.3  Flow-induced hyphema disruption

Using the model described above, some simple estimates may be made of the maximum
possible size of a hyphema for given parameter values. We suppose that a hyphema has
formed at the base of the cornea and ask how far it can project upwards into the flow
before its constituent red blood cells can overcome the force of gravity and be swept away
into the flow. Assuming that the red blood cells have radius a,, density pr and are subject
to Stokes’ drag, the condition that the settling force is overcome by the convective flow is
given by

—brppvuar > Vig(or — po)
where V; is the volume of a red blood cell. Using (2.21), this gives

por(Th — Tp)ayargz(2z — Yz —h) 4 5
o > 374 (pr — podg,

which may be simplified to

8haZ(p; — po)

22z —h)(z—h) > _—_—_Ba(Tl ~Tope

We note that for £/2 < z < h a hyphema can never be disrupted as the flow is in the same
direction as gravity. Particles, however, at say z = Ak where 0 < L < 1/2, will overcome
gravity-induced setiling so long as

84; (pc — po)

RPA(1—20)(1 — ) » — 222
(=200 =0 > 5 0 —Toym

(49)
Particles in a hyphema may therefore move most easily when A(2A — 1)(A — 1) attains a
maximum, which occurs at A = 1/2 — +/3/6 ~ 0-211. Using this value of A in (4.9) and
simplifying, we find that a hyphema can exist only where the corneal height  satisfies

B2 < lsﬁa?(ﬁr - ﬂO)l
a{l — Tolpp

Using a; = 3-5um, py = 1500kgm™>, op = 1000kgm™> and @ = 3 x 107*K ! now
gives a critical corneal height (measured in m) of

ky
11 —To

where k; = 7-5 x 10~ mKY2, which seems well in accordance with observation

In addition to suggesting that the mathematical model predicts very plausible maximum
sizes for hyphemas, the ahove resulis suggest a speculative treatment for the dispersion
{or at least amelioration) of a hyphema. Since the size of the hyphema has been seen to
depend inversely upon the square root of the temperature difference from the cornea to
the pupil and iris, a cold eye patch worn by the patient is likely to decrease hyphema size
and provide a temporary treatment for this condition. Thus far, we have been able to find

h <
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no details in the literature of such a procedure being used, though the use of cold jets
on the eye to promote natural convection and to consequently enhance mixing of various
pharmacological agents has been previously employed (see, for example, Kaufman, 1985
and Gabelt e al, 1991). An ethically acceptable experimental study could easily be
designed: its main component would involve observational studies of the movement of
particles in an anterior chamber (i) during the day (ii) at say 3.00am immediately after
awakening from sleep, (iii) several hours after a double eye-pad has been applied and (iv)
after application of an ice-pack. This would involve only minor inconvenience and virtually
no discomfort for the patient. We are hoping to proceed with such a study in the near future.

5. The formation of a Krukenberg spindle

We now examine the formation of a Krukenberg spindle. The distinguishing feature of
a Krukenberg spindle is that it is formed by pigment particles which are so light and
small that their setiling velocity is negligible. It therefore seems that that the formation of
such deposits must perforce involve flow into and out of the anterior chamber. Anecdotal
evidence suggests that the formation of a Krukenberg spindle may take place mainly during
sleep. We hypothesize that pigment particles are ‘generated’ during waking hours by a
‘reverse pupil block” mechanism (see, for example, Ball, 1999) involving increased contact
between the iris and the anterior lens surface. At night, a patient’s closed eyelids effectively
insulate the antetior chamber, Further temperature equalization is provided by the fact
that ambient conditions tend to be warmer than during the day and no tear evaporation
takes place. The thermal gradient across the anterior chamber is thus greatly reduced and
may vanish completely. The effects of buoyancy and gravity (whose effective direction is
dictated by the patient’s sleeping position) are therefore negligible and flow is dominated
by fluid motion through the pupil aperture. We therefore consider the case wo # 0. If we
write (2.20) in polar coordinates as

1 1
;(rh3Pr)r + ;,,50:31’9)9 = —12povwo

then for general % it is clear that a numerical sofution will be required. If, however, we
assume that both the eye geometry and the inflow are symmetrical so that 4 and wo depend
only upon r, the pressure equation may be solved to yield

P = —12ppv{2(r) + constant
where §2(r) satisfies

rh 8,

r

and the constant of integration is chosen to ensure that P = 0 when & = 0. For a given &
and wp the solution for the flow is now completely determined.
A simple example of the sort of flow that might be expected is furnished by taking

wp = Ai(r? — aHr? — a2 /), h=ho1—r2ja? (51
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where Aj, (which characterizes the injection rate) and ky are suitably chosen constants . The
inflow/outflow velocity distribution wq () has been chosen so that the total amount of fluid
in the anterior chamber remains constant; it is also passably realistic in that it simulates
inflow through a pupil aperture (of radins a/+/3) and outflow concentrated over a fairly
small region near to r = a. (It is worth mentioning that it is in fact possible to refine the
choice for wy to include delta-function type behaviour at the angles for increased realism;
the resulis are very similar however, and the mathematics is greatly complicated.) Using
(5.1) gives

. 3
P 2Aipova (a2 B r2)3/2

(5.2)
3n3

and the complete velocity distribution is now determined. In its most general form, the flow
is fully three-dimensional, the effects of buoyancy competing with those of flow through
the pupil aperture. For small values of A;, the incoming flow makes little difference and
the flow is very similar to that shown in Fig. 4. When A; is taken to be so large that
the injection dominates the flow, then the result is an axisymmetric flow with almost no
#-dependence; the flow streamlines rise from the pupil aperture, bend around below the
cornea, and exit via the iris It is worth examining this latter case in a little more detail, for,
as explained above, the results lead one to speculate that a Krukenberg spindle is formed
under circumstances when buoyancy forces are negligible. When A; is large the flow is
given essentially by

3
a’ Aixz
= h; (hoy/ 1 — r2ja? — 2)(a® — rH)!/? (5.3)

0

3
a’A;vz
v = héy (hoy/ 1 — r2/a2 — 2)(a® — rH\/2 (5.4)

_ @A | 2Qa2-3rY)  he’ (@ - 2rY) N hy(a® - r*)a® —3r?) 55
hg 3va% —r? a 3a? ST

Figure 6 shows streamlines for this flow in a slice y = 0 of the anterior chamber (Note
that the Reynolds number based on wy at # = 0 and an aperture radius of a/+/3 is given by
(Aia®)/(3+/3v) which, with A; = 10*s 1m 3, ¢ = 65mm and v = 0.9 x 10~ m?s~!
gives about 0 023, so that the assumption of slow flow is valid ) For a Krukenberg spindle
to form, it is clear that (2) particles must be convected close to the cornea by the flow and
(b) particles must have some chance to adhere to the cornea. The former condition depends
simply on which streamline the particles are injected. We may expect that whether or not
the latter condition is satisfied will depend largely on the amount of shear stress that the
flow exerts on a particle. To leading order, the magnitude of the shear stress on the cornea
is given by 7. =| (poviz, povvz, 0) lz=h(x,y) Thus

We therefore seek to generate a Krukenberg spindle in the anterior chamber as follows:
we numerically generate particles at random locations in the pupil aperture and follow
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FIG 6. Strearnlines in slice y = 0 of anterior chamber for flow through pupil aperwre.

their progress along the flow streamlines by solving dx/dt = u, dy/df = v and dz/d¢t =
w (where u, v and w are given by (5.3)-(5.5)) using a standard numerical initial value
problem solver. Pigment particles are then adjudged to have ‘stuck’ to the cornea so long
as (a) they approach to within a specified distance of the cornea and (b) the corneal shear
stress at the sticking point is less than a given value, Figure 7 shows a Krukenberg spindle
generated in just such a manner: a value of A4; = 10000 s~ 1 m™? (which corresponds to a
flow rate through the pupil aperture of about 2-5ul min~1) was used for the computations.
Of the 5000 particles generated, 399 stuck to the cornea and 4601 eventually exited the
anterior chamber

Although our main objectives of providing mechanisms and predictions for hyphema
and Krukenberg spindle formation have now been achieved, it is worth noting that when
the effects of injection and buoyancy compete the flow is fully three-dimensional and the
exact solution given by (2.16)~(2.18), (2.19), (5.1) and (5.2) is of fluid dynamical interest
in its own right. Although space constraints permit only the briefest discussion of such
flows, we note some of the more important details. The top portion of Fig. 8 shows particle
paths in the plane y = 0 for parameter values @ = 5-5mm, g = 2:75mm, g =9 8 ms~?,
p =09 x 107 5m2s !, pp = 1000kgm=2, & =3 x 10~*K~! and A; = 10*sec™! m~3.
The temperature difference in this case was taken tobe 71 — Tp = 0-02° C. Fluid enters the
anterior chamber from the pupil aperture and some exits as might be expected near to the
corners of the chamber, We note, however, that a stagnation point exists in the flow (located
at x =~ 2-4mm, y =~ 1mm) and captures fluid that enters from some parts of the pupil
aperture Although this seems to violate conservation of mass, it may be confirmed that the
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FIG 7 Numerical simulation of Krukenberg spindle formation resalting from flow through pupil aperture.

stagnation point is two-dimensional and thus ‘traps’ only fluid particles that originate from
the plane y = 0.

Examination of the particle paths of fluid particles that originate from locations near to
the plane y = 0 confirm that the flow streamlines look largely like those in Fig. 8. During
the final approach to the stagnation point, however, such particles are ejected normal to
the plane y = O for example, fluid particles originating from x = I mm, y = 0-01 mm,
z = 0 eventually exit the anterior chamber at x = —1.07mm, y = 398 mm, z = 0.
The complete three-dimensional flow pattern is thus extremely complicated and almost
impossible to display successfully in two dimensions. ‘

6. Discussion and conclusions

A simple model has been developed which predicts the details of thermally driven flow
in the anterior chamber of the eye. Although historically there has been little doubt that
such flows really exist, unless particles are present in the anterior chamber it is extremely
difficult to observe fluid moiion and some previous discussions have relied upon anecdotal
evidence The model presented above shows unequivocally that buoyancy driven flows
in the anterior chamber are inevitable, and indicates that only very small temperature
differences are required to drive such flows. Wyatt (1996) remarks that (apart from cooling
currents in the inner ear that are believed to lead to dizziness) there seem to be no other
circumstances in the healthy human body where natural convection plays a significant role.

In Section 3 the effect of adding particulate matter to the flow was discussed. Such
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FiG. 8. Particle paths for flow in the plane y = 0 when the effects of buoyancy and flow through the pupil aperture
have equal importance.

particulate matter may be present as the result of eye trauma or as a by-product of a
range of conditions and diseases that may affect the eye. Analysis of the equations shows
that thermally driven fiow provides a powerful mechanism for the distribution of particles
within the anterior chamber that may compete with gravity-induced settling to determine
the final distribution of red, white or pigment cells in the anterior chamber.

Our predictions of Krukenberg spindle formation concur in their general features with
what is observed by eye surgeons (though many different shapes of spindle are observed).
Tt is possible, however, that, after nocturnal formation, the structure may be smeared
somewhat by particles sliding under the action of buoyancy-driven convection during the
day Some (rather inconclusive) evidence suggests that although this may be the case, the
smearing only takes place in the direction of gravity; this again accords well with the theory
presented above and would give rise to the ‘spindle’ shape that is most often seen.

Because our aim in this study was to use asymptotic analysis to gain a qualitative
understanding of the flow, many simplifications have been made. In particular, the ability of
the particles to adhere to one another (especially important in the case of white blood cells)
was not considered, whilst the tendency of particles to stick to the surface of the cornea was
modelled in the simplest possible way. The full details of the deposition and resuspension
of particles in a flow are extremely complicated (see, for example, Please & Wilmott, 1987)
and much more complicated modelling would be required if this matter was to be addressed
in detail. Future models should also give more attention to the way in which particulate
matter is released and enters into the flow. One problem in adopting refined modelling of
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this sort would be to adequately compare putative models to observed behaviour, Evidently
ethical considerations dictate that the sort of detailed in vivo experimenis that would
be required to validate detailed particle release and corneal adherence models would be
fraught with difficulty.

Another area in which more detailed study might be possible concerns the heat transfer
across the cornea. We have assumed simply that the temperature on the inside of the
cornea takes some given value, which is lower than body temperature. In reality, one might
expect that the ambient temperature would be attained on the corneal epithelium rather
than, as assumed, to the endothelium. Although our analysis has shown conclusively that
only very small temperature gradients are required to drive a flow, af present we have no
means of estimating how large these differences might actually be (other than comparing
observed particle transit times with those predicted for a given temperature difference by
say (2.21) and (2 23)). Although this might be a fertile area for future research, it is not a
simple one; matters are complicated by motion of the eye and eyelid, and the fact that the
corneal surface is continnally bathed by tear film which flows and evaporates. We have,
however, carried out some parametric studies using a Newton cooling boundary condition
at the corneal surface, assuming that the thermal properties of corneal tissue are similar to
those of water (see, for example, ICRP, 1975) and incorporating various different forms of
heat transfer coefficient. As might be expected, inclusion of these effects made very little
difference to any of the results.

It is also worth mentioning that other mechanisms (for example, changes in the
pupillary diameter and extraocular muscle-induced motion of the eyes) might enhance
particle transport. Though these are primarily unsteady effects, their infiuence could be
added to more detailed models of the flow

One of the more important by-products of the model developed above is the
identification of important non-dimensional parameters in the problem. The ability to
characterize the strength of thermally induced buoyant convection suggests a method
for assisting the process of hyphema break-up. For example, applying a cooled eye
patch would increase the temperature difference across the anterior chamber. This should
increase convection and disperse the hyphema As far as the authors are aware this is a
new idea. It seems, however, that since the possible benefits of such treatment are great
whilst the side effects seemn to amount to no more than some temporary mild discomfort,
the treatment could be tested with few attendant risks
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