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In this study a previously derived two-dimensional model is used to describe the slow spreading of viscous
films on the surface of a quiescent deep viscous pool due to gravity. It is assumed that the densities and
viscosities of the fluids in the films and pool are comparable, but may be different. It is also assumed that
surface tension effects are negligible. The fluid in the films and in the pool are both modelled using the
Stokes flow equations. By exploiting the slenderness of the spreading films, asymptotic techniques are used to
analyse the flow. It is shown that the dominant forces controlling the spreading are gravity and the tangential
stress induced in the films by the underlying pool. As a consequence the rate of spreading of the films is
independent of their viscosity. For the case special of a symmetric configuration of films on the surface of
the pool the flow is studied by assuming the solution becomes self-similar and hence the problem is recast
in a self-similar co-ordinate system. Stokeslet analysis is then used to derive a singular integral equation for
the stresses on the interfaces between the films and the pool. The form of this integral equation depends on
the configuration of spreading films that are to be considered. A number of different cases are then studied,
namely, a single film, two films and an infinite periodic array of films. Finally some results are derived that
apply to a general symmetric configuration of films. It is shown that the profile of a spreading film close to
its front (where the film thickness becomes zero) is proportional to x1/4. It is also shown that fronts move,
and hence, the distance between adjacent fronts increase proportional to t1/3.
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I. INTRODUCTION

The spreading of fluid films over fluid pools are exam-
ples of problems in the field of gravity currents. Such
flows are driven by differences in density and arise in
many natural and industrial situations. Gravity cur-
rents have been thoroughly studied in fluid mechanics
since the 1940’s; a good review of the progress that has
been made is given in Huppert22, which describes not
only theoretical results but also natural and industrial
applications of such flows. Examples of gravity cur-
rents that occur in nature include the propagation of
air currents, the spreading of oil slicks, saline currents
in the ocean, intrusion of clouds in the atmosphere, the
spreading of lava, magma flows and the evolution of snow
avalanches4,5,35. Some industrial examples include acci-
dents in which dense gases are released, the flows in glass
furnaces and other areas of glass manufacture including
optical fibres11,13,20.
Some of these physical situations involve the spreading

of one fluid on the surface of another. For example, stud-
ies have considered the problem of oil spreading over the
sea4,18. This is an example of a viscous fluid (oil) spread-
ing over the surface of a relatively inviscid fluid (water).
In these studies estimates were derived for the length of
the spreading oil film as a function of time. Lister et al.26

were the first to consider the problem of a viscous gravity
current intruding along an interface between two ambi-
ent stably stratified viscous fluids. For the case of deep
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ambient layers and the case of a shallow lower layer with
a fixed lower boundary the nonlinear equations which
govern the spreading were derived. Similarity solutions
to these governing equations were obtained by assuming
that the volume of fluid in the spreading film increased
proportional to tα (with α ≥ 0). The theoretical predic-
tions on the shape and length of the intruding film were
shown to be in good agreement with a series of experi-
ments. More recently, in Koch et al.25 a related problem
was considered in which a buoyant viscous drop was al-
lowed to spread below a free fluid surface. Boundary
integral methods were used to find numerical solutions
for the initial spreading of the drop. To compliment this
an asymptotic description of the drop spreading exten-
sively was also given. It was found that different physical
mechanisms are dominant in controlling the spreading
depending on the viscosity contrasts between the drop
and ambient fluid. For very low viscosity drops it was
shown that the greatest resistance to spreading occurs at
the rim of the drop, for drops with intermediate viscos-
ity the dominant mechanisms controlling the spreading is
the shear stress at the drops lower surface. Furthermore,
for drops with high viscosity the radial stresses within the
drop control the spreading. More recently, in Foster et

al.13, a problem akin to that considered in26 was revisited
in the context of glass manufacture. Here, the spreading
of a log (a film of molten glass foam) over the surface of
a pool of molten glass was considered in two dimensions.
Analytical solutions were obtained by means of similarity
reductions for the case of a fixed volume of fluid in the
film. In the current study we extend the previous results
to describe the evolution of multiple spreading viscous



The slow spreading of several viscous films over a deep viscous pool 2

films. This extension is both of theoretical interest, and
has applications in the glass making industry where ob-
servations suggest that the spreading films may influence
one another’s motion by driving flows in the underlying
viscous pool. Understanding how logs drive one anothers
motion is of paramount importance when attempting to
ensure that bubbles from the glass foam are not frozen
into the glass product. For a more in-depth discussion of
the applications to glass making we refer the reader to
Foster et al.13.

The model assumes that the densities and viscosities of
the fluid in the films and pool are comparable, but may
be different. It is also assumed that surface tension ef-
fects are negligible. The fluid in the films and in the pool
are modelled using the Stokes flow equations. Since we
are interested in situations where the depth of the pool is
much larger than the spatial extent of the spreading films
we model the pool as occupying the lower half-plane.
The small aspect ratio, ǫ (= typical film depth/typical
film length), of the spreading layers is exploited to de-
rive a system of PDEs for the lowest order evolution of
the spreading films. For the special case of a symmet-
ric configuration of films it is assumed that the solution
becomes self-similar, hence, the flow in the deep pool is
analysed by considering the problem in self-similar co-
ordinates. This leads to a singular integral equation that
relates the stresses on the interfaces between the spread-
ing layers and the pool. We then study a number of
different configurations of films and also derive some re-
sults that apply to a general symmetric configuration of
films. In each case, once the appropriate integral equa-
tion has been solved a simple ODE problem can then be
solved to determine the evolution of the films. Hence a
description of the spreading of the films is derived and
predictions are made concerning the flow induced in the
underlying pool.

In the parameter regime under consideration it is found
that the dominant forces controlling the spreading are
the gravitational force due to the buoyant films and
the viscous stress in the pool. As a consequence, the
spreading of the films is independent of their viscosity.
It is also shown that the films float on the pool at a
height determined according to a relation consistent with
Archimedes’ principle. It is shown that the position of
the fronts of each film move proportional to t1/3. As a
consequence the distance between adjacent fronts also in-
creases proportional to t1/3. For a single film, two films
and an infinite periodic array of films analytical descrip-
tions of the films evolution are derived. In these cases it
is found that the gradient of the profile of the films near
their fronts is infinite and close to this front the profile
of the film is proportional to x1/4. In section VIII it is
shown this asymptotic behaviour also holds for a general
symmetric configuration of films.

II. PROBLEM FORMULATION

As discussed, a model for the slow spreading of films of
incompressible viscous fluid over a quiescent deep incom-
pressible viscous pool is now set up. A schematic diagram
of the flow is shown in figure 1. The fluid in the deep pool
is referred to as fluid 1, and the fluid in the spreading lay-
ers as fluid 2. The density and viscosity of fluids 1 and
2 are defined to be ρ1, µ1, ρ2 and µ2 respectively, with
ρ1 > ρ2 so that the spreading films are less dense than
the underlying pool and are therefore stably stratified
on the pool’s surface. The regime in which both phases
are well represented by slow-viscous flows is considered,
and so the Stokes flow equations are used to govern the
flow in each phase. The deep pool has a stress free top
surface (denoted by y = f(x, t)). Note that f(x, t) is
only defined for intervals of x in which there is no fluid 2
floating on the surface (i.e. where g(x, t) and h(x, t) are
zero), as shown in figure 1. The free surface at the top of
fluid 2 (denoted by y = h(x, t)) is also modelled as stress
free. Across the fluid-fluid surface between fluids 1 and
2 (denoted by y = −g(x, t), so that g(x, t) is the depth
of the film below the surface of the pool), stresses and
velocities are continuous. Note that by defining the sur-
faces in this manner the thickness of the floating layers is
given by g(x, t)+h(x, t). The surfaces f(x, t), g(x, t) and
h(x, t) all evolve as material surfaces and hence satisfy
the usual kinematic condition. Since the pool is quies-
cent the velocities in fluid 1 far from the spreading films
vanish. Specification of the initial configuration of the
films completes the problem definition.

The flow is non-dimensionalised using the following
scalings. In what follows hatted variables represent quan-
tities in the pool and barred variables represent quanti-
ties in the films. In the spreading films we set x = Lx̄,
y = hȳ, u = ǫ−1u0ū, v = u0v̄ and p = ρ2grhp̄. In the
pool we set x = Lx̂, y = Lŷ, u = ǫ−1u0û, v = ǫ−1u0v̂
and p = ǫ−1ρ2grhp̂. Time is scaled by setting t = ǫLu−1

0 t̂.
Where ǫ = hL−1 and u0 = ρ2grh

3µ−1
2 L−1. We note that

although we have chosen to denote the non-dimensional
time variable with t̂ this scaling is used for the flow in
both the films and pool, hence, the hatted notation for
this variable does not refer exclusively to the time scale
in the pool. With these scalings three non-dimensional
parameters are shown to characterise the flow. The first
parameter, ǫ (= typical film depth/typical film length),
is the aspect ratio of the spreading films. The second, µ
(= µ1/µ2), is the ratio of the viscosities of the two flu-
ids, and the third, ρ (= ρ1/ρ2 > 1), is the ratio of the
densities of the two fluids. In the case when the spread-
ing films typical length is much greater than their typical
depth the small aspect ratio of the films may be exploited
by considering the flow in the limit that ǫ → 0. In this
limit both µ and ρ are taken to be O(1). By making reg-
ular asymptotic expansions for the dependant variables
in the problem it has been shown13 that to leading order
(in ǫ) the motion of the spreading films is governed by
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FIG. 1. A schematic diagram of the flow showing characteristics length scales.

the equation of conservation of mass,

∂

∂t̂
(g + h) +

∂

∂x̄

(

û
∣

∣

∣

ŷ=0
(g + h)

)

= 0. (1)

Here t is time, x̄ is the horizontal coordinate in the films,
û is the horizontal component of the fluid velocity in the
pool and ŷ = 0 is the fluid-fluid surface in the scaled
co-ordinates. Note that the quantity g + h is the film
thickness, this arises since h is defined as the height of
the film above the surface of the pool and g is defined as
the depth of the film below the surface of the pool. The
films also obey a force balance between gravity and the
shear stress induced by the underlying pool,

(g + h)
∂h

∂x̄
+ µ

∂û

∂ŷ

∣

∣

∣

ŷ=0
= 0, (2)

where ŷ is the vertical coordinate in the pool. Finally,
the films have been shown to float at a height determined
by a relation consistent with Archimedes’ principle,

h = (ρ− 1)g. (3)

By re-dimensionalising (1), (2) and (3) it can be seen that
the system of equations that governs the spreading of the
films is independent of µ2. Hence, the rate of spreading
of the films is independent of their viscosity. This result
can be understood intuitively, since the films are slender
their viscous stresses impose a negligible contribution to
the force balance. In particular, the viscous stresses in
the pool dominate those in the films.

III. A SYMMETRIC CONFIGURATION OF FILMS

In order to make further analytical progress with
the problem the special case when the configuration of
spreading films has reflectional symmetry in the vertical
axis is now considered. If the flow has this property then
the equations may be reduced to a steady problem by
making a self-similar reduction of the form

û = t̂−2/3U(φ, θ), (4)

v̂ = t̂−2/3V (φ, θ),

p̂ = t̂−1P (φ, θ),

g = t̂−1/3G(φ),

h = t̂−1/3H(φ),

with

φ = x̂t̂−1/3 and θ = ŷt̂−1/3. (5)

Note that by using this reduction some information about
the initial configuration of films is inherently given. In or-
der to close the reduced problem is it sufficient to specify
the quantity of fluid in each film and one further con-
dition on the location of one of the fronts of each of the
films at some reference time (or equivalently the distance
between adjacent films at some reference time). It is
useful therefore to introduce the notation φ = φn and
φ = φn+1/2 as the location of the left and right fronts

of the nth film along the line θ = 0. Hence H(φn) =
H(φn+1/2) = 0. We also write F = ∪n=N

n=−N (φn, φn+1/2)
so that F is the union of intervals along the line θ = 0
for which H is non-zero, as shown in figure 2. Due to the
form of (4) the position of the fronts of the nth film are
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φn = xnt
−1/3. Hence fronts move proportional to t−1/3,

and, adjacent fronts separate proportional to t−1/3.
Using the reduction (4) and equation (3), (1) and (2)

may be written as

d

dφ

(

H

(

U −
1

3
φ

))

= 0 (6)

and

d

dφ

(

H2

2

)

=
µ(1− ρ)

ρ

∂U

∂θ
(7)

on θ = 0 for φ ∈ F.

Since equation (6) holds along the line θ = 0 this may
be integrated with respect to φ. Owing to the symmetric
nature of the flow U(0, 0) = 0, hence, equation (6) leads
to the results,

U =
1

3
φ on θ = 0 for φ ∈ F. (8)

By introducing a stream function, ψ(φ, θ), defined as

∂ψ

∂θ
= U, −

∂ψ

∂φ
= V, (9)

the problem for the flow in the pool under a general sym-
metric configuration of spreading films may be written as

∇4ψ = 0 (10)

subject to

∂2ψ

∂θ2
= 0 and ψ = 0 on θ = 0 for φ /∈ F. (11)

∂ψ

∂θ
=

1

3
φ and ψ = 0 on θ = 0 for φ ∈ F. (12)

∂ψ

∂θ
→ 0 ,

∂ψ

∂φ
→ 0 as φ→ ±∞. (13)

∂ψ

∂θ
→ 0 ,

∂ψ

∂φ
→ 0 as θ → −∞. (14)

Note that the first condition in (12) is (8) written in terms
of the stream function ψ. To solve the problem posed
by (10) - (14) Stokeslet analysis is used. Consider the
stream function of a Stokeslet oriented in the direction
of positive φ on the line θ = 0 positioned at the point
φ = Φ,

ψs(φ, θ,Φ) = −
θ

2
ln
(

(φ− Φ)2 + θ2
)

− 1. (15)

Provided Φ ∈ F , ψs satisfies equation (10), (11), (13) and
(14). Hence, to solve the problem posed by (10) - (14) a

superposition of Stokeslets must be picked such that (12)
is satisfied. Using equation (12) this requirement may be
written as

lim
θ→0−

−

∫

F

s(Φ)
∂ψs

∂θ
(φ, θ,Φ) dΦ =

1

3
φ for φ ∈ F, (16)

where s is a function that describes the Stokeslet concen-
tration in F . Note that this equation cannot simply be
evaluated on θ = 0 due to the singular nature of (15),
instead the limit that θ → 0− must be taken. Note also
that the ‘dashed’ integral sign indicates that the integral
is to be understood in the Cauchy Principal value sense.
Taking the derivative of (16) with respect to φ and tak-
ing the limit that θ → 0−, equation (16) may be written
as

−

∫

F

s(Φ)

Φ− φ
dΦ =

1

3
for φ ∈ F. (17)

The solution to equation (17) depends critically on the
form of the domain of integration F . In sections IV, V,
VI and VII the function s is computed for a number of
different examples. In the interests of brevity and clarity
of the problem structure we continue to solve the problem
assuming that s may be determined from equation (17).
The tangential stress on the fluid-fluid surface can be

found by noting that the Stokeslet solution, ψs, is the flow
generated by a stress singularity of strength 2π. Hence

∂U

∂θ

∣

∣

∣

θ=0
= 2πs(φ) for φ ∈ F. (18)

Substitution of equation (18) into (7) and integrating
with respect to φ gives

H2 = 4π
µ(1− ρ)

ρ

∫

F

s(φ)dφ for φ ∈ F (19)

as an expression for H2. A number of examples of differ-
ent configurations are studied in the following sections.

IV. A SINGLE SPREADING FILM

In this section some of the results of Foster et al.13

and Lister et al.26 are rederived. For the case of a single
spreading film F takes a particularly simple form, a single
section of the line θ = 0. Due to the assumed symmetric
nature of the problem, in this case, φ1 = −φ3/2. Hence,
equation (17) takes the form

1

3
= −

∫ +φ1

−φ1

s(Φ)

Φ− φ
dΦ for − φ1 < φ < +φ1. (20)

Equation (20) may be solved using standard results, see
Muskhelishvili30, to give

s(φ) =
1

3π

φ
√

φ21 − φ2
for − φ1 < φ < +φ1. (21)
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θ = 0

φ = φn φ = φn+1/2 φ = φn+1φ = φn−1/2

φ ∈ Fφ ∈ F φ ∈ F

H = 0 H = 0

︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷

FIG. 2. A schematic of the problem in the self-similar coordinate system.

Following the steps outlined between equations (17) and
(19), and, imposing the conditions H(−φ1) = H(+φ1) =
0, the profile of the film can be shown to take the form

H2 =
4

3

µ(ρ− 1)

ρ

√

φ21 − φ2

for − φ1 < φ < +φ1. (22)

Closure of the problem, finding φ1, is completed by spec-
ifying the total amount of fluid in the film. This is im-
posed by consideration of the equation

∫ +φ1

−φ1

Hdφ =M1. (23)

Where M1 is the quantity of fluid in the film.

For the purposes of demonstration we use the example
of M1 = 1 and 2µ

3
ρ−1
ρ = 1. In this case it can be shown

numerically that φ1 ≈ 0.5481. The predicted profile for
H and streamlines of the flow generated in the pool are
shown in figures 3 and 4.

V. A FINITE NUMBER OF SYMMETRIC FILMS

In this section the problem for a finite number of sym-
metrically arranged films is studied. The solutions that
we derive demonstrate how films can influence one anoth-
ers motion. This is an interesting extension of previous
results and has applications in physical situations (e.g.
glass manufacture13). In this case equation (17) may be
written as

1

3
= −

∫

F−

s(Φ)

Φ− φ
dΦ+−

∫

F+

s(Φ)

Φ− φ
dΦ for φ ∈ F. (24)

Where F+ = {φ ∈ F |φ > 0} and F− = {φ ∈ F |φ < 0}.
The symmetry of the problem may then be exploited by
substituting Φ = −Φ in the first term on the RHS of
(24). Hence

1

3
= −

∫

F+

s(Φ)
2Φ

Φ2 − φ2
dΦ for φ ∈ F+. (25)

To make further analytical progress we put Φ2 = q and
φ2 = p, and also define φ2n = pn, s1(q) = s(Φ) and F̄ =
∪n=N
n=1 (pn, pn+1/2). Equation (25) may then be written as

1

3
= −

∫

F̄

s1(q)

q − p
dq for p ∈ F̄ . (26)

Equation (26) takes the form of a Fredholm singular in-
tegral equation of the first kind, where the domain of
integration, F̄ , is a union of disjoint sections of the real
line. Equation (26) can be inverted for s1 using results
in Muskhelishvili30 to give

s1(p) = −
1

3π2

n=N
∏

n=1

1
√

−(pn − p)(pn+1/2 − p)

(

−

∫

F̄

1

q − p

n=N
∏

n=1

√

−(pn − q)(pn+1/2 − q)dq + c

)

. for p ∈ F̄ . (27)

Where c is a constant to be determined. Calculating
the integral in equation (27) is, in general, a problem

that must be treated numerically. However, some analyt-
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FIG. 3. H(φ) for M1 = 1 and 2µ
3

ρ−1
ρ

= 1.

FIG. 4. The streamlines of the flow in the pool in the (φ, θ)
plane for M1 = 1 and 2µ

3
ρ−1
ρ

= 1. These streamlines have
been computed numerically integrating the product of s and
ψs on the domain F and plotting the contours of the resulting
function.

ical progress can be made by simplifying to some special
cases. Having made analytical progress with the prob-
lem of an isolated film we now consider multiple films.
In the next section we will show that substantial analyt-
ical progress can be made with the dual film problem.
For larger numbers of films some analytic progress can
be made, however, these problems involve elliptic func-
tions (amongst others) that require numerical treatment
and in keeping with the spirit of this paper we do not
consider them here.

VI. TWO SYMMETRIC FILMS

For the case of two films the integral in equation (27)
can be calculated analytically by standard methods, see
Abramowitz1. In terms of the φ coordinate system it

may be written that

s(φ) =
1

3π

φ2 + c1
√

(φ2 − φ21)(φ
2
3/2 − φ2)

for φ ∈ (−φ3/2,−φ1) ∪ (φ1, φ3/2). (28)

Where c1 is a constant that may be determined by re-
quiring that H(±φ1) = H(±φ3/2) = 0. Hence, c1 =

−((φ3/2 − φ1)/2)
2. Equation (19) becomes

H2 =
4

3

µ(1− ρ)

ρ

∫

φ2 − ((φ1 + φ3/2)/2)
2

√

(φ2 − φ21)(φ
2
3/2 − φ2)

dφ

for φ ∈ (−φ3/2,−φ1) ∪ (φ1, φ3/2). (29)

The integral in equation (29) must be computed numeri-
cally. However, some manipulations can be made to mini-
mize the amount of computation. Since the film thickness
is zero at the points φ = ±φ1 and φ = ±φ3/2 equation
(29) may be be written as

H2 =
4

3

µ(ρ− 1)

ρ

∫ φ3/2

φ

φ2 − ((φ1 + φ3/2)/2)
2

√

(φ2 − φ1)(φ23/2 − φ2)
dφ

for φ ∈ (−φ3/2,−φ1) ∪ (φ1, φ3/2). (30)

The problem is then reduced to finding φ1 and φ3/2. One
condition on one of the fronts of each of the films must
be given. In this example we choose to specify the value
of φ1, since this is the shortest distance between films at
t̂ = 1. A second condition, to find φ3/2 is to specify the
total amount of fluid in each film. In the same way as
section IV the equation

∫ φ3/2

φ1

Hdφ =M2 (31)

is used. To determine φ3/2 from equations (30) and (31)
a shooting method is employed using the following steps.

• A guess for φ3/2 is made.

• The RHS of (30) is then computed numerically us-
ing an adaptive Gauss-Kronrod quadrature34 at a
number of equally spaced values of φ on the interval
(φ1, φ3/2).

• From this numerical approximation to H a value
for the LHS of (31) is computed using a composite
Simpson’s rule. If the LHS of (31) is less than M2

the guess for φ3/2 is increased. However if the LHS
of (31) is greater than M2 the guess for φ3/2 is
decreased (since the LHS of (31) is a monotonic
increasing function of φ3/2).

• This process is repeated until the LHS of (31) is
equal to M2 ±E, where E is some error tolerance.

For the purposes of demonstration we choose to
use the example of choosing φ1 = 1, M2 = 1 and
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FIG. 5. H(φ) for for M2 = 1 and 2µ
3

ρ−1
ρ

= 1.

2µ
3
ρ−1
ρ = 1. Using 100 equally spaced values of φ on

the interval (φ1, φ3/2) and a value of E = ±10−3 it is
found that φ3/2 ≈ 2.0924, the predicted profile for H
and streamlines of the flow generated in the pool are
shown in figures 5 and 6. It is at this stage that a
comparison can be made between the single film and
dual film problems. We note that in the single film
case (with a unit mass and µ(ρ − 1)/(3ρ) = 1) the
length of the film was predicted to be approximately
2 × 0.5481 = 1.0962. As we have just seen, our model
predicts that two films (each with a unit mass and
µ(ρ − 1)/(3ρ) = 1) each have a length of approximately
2.0924 − 1 = 1.0924. In addition, the profiles predicted
in the single and dual film cases are not dissimilar (see
figures 3 and 5). This is an interesting result that
indicates that the profile of a film is not significantly
affected by introducing a neighbouring film. However,
although the profile is not appreciably changed the mo-
tion of the film is qualitatively altered by the presence
of a neighbouring film, in that, it is pushed along the
surface of the pool by the flow generated by its neighbour.

VII. AN INFINITE PERIODIC ARRAY OF FILMS

In this section a problem is considered for an infinite
periodic array of spreading films. This problem gives rise
to some novel mathematical results and could be thought
of as a limiting case for a large (but finite) array of films.
We anticipate that the infinite periodic array problem
gives the lowest order approximation for the evolution of
the films sufficiently far from the edges of a large finite
array. In other words, we expect the solutions that we
derive to approximately describe the evolution of films
near to the centre of a large finite array. As we shall see
later this approach has the advantage that the approxi-
mate solution may be found analytically, whereas, equa-
tion (27) would require non-trivial numerical treatment
to find solutions. At this stage we should point out that
there are some difficulties associated with studying the
infinite periodic array problem. For example, it predicts
infinite velocities in the far-field (which are, of course,

FIG. 6. The streamlines of the flow in the pool in the (φ, θ)
plane for M2 = 1 and 2µ

3
ρ−1
ρ

= 1. These streamlines have
been computed numerically integrating the product of s and
ψs on the domain F and plotting the contours of the resulting
function.

non-physical) however we proceed to solve the problem
bearing in mind that we can regard the solution as an
approximation to the large finite array problem.
We denote the distance between the centre of adjacent

films at time t̂ = 1, D, and the length of each film at
time t̂ = 1, 2a. In the interests of algebraic clarity the
horizontal co-ordinate is scaled with D by putting φ =
Dφ̄. Then the distance between the centre of adjacent
films in the φ̄ coordinate system is one, and the extent
of each film is 2a/D = 2ā. Without loss of generality we
choose to position the centres of the films at φ̄ = n+1/2
along the line θ = 0, where n ∈ Z. Equation (17) may
be written as

1

3
=

n=+∞
∑

n=−∞

−

∫ (n+1/2)+ā

(n+1/2)−ā

s(Φ)

Φ− φ̄
dΦ for

φ̄ ∈ (n+ 1/2− ā, n+ 1/2 + ā). (32)

We now put Φ = n+ 1/2 + q and φ̄ = m+ 1/2 + p with
p, q ∈ (−ā,+ā) and m ∈ Z. Owing to the periodicity of
the problem the function s has the property that s(z) =
s(z + k) for any k ∈ Z. Therefore, the problem may be
reduced to considering a single period of the function s
by writing equation (32) as

1

3
= −

∫ +ā

−ā

s(q)

n=+∞
∑

n=−∞

1

(n+ q)− (m+ p)
dq

for p ∈ (−ā,+ā). (33)

This is a singular Fredholm integral equation of the first
kind for the function s. The form of the kernel in equa-
tion (33) may be manipulated into a simpler form by
noting that the kernel is related to the Hurwitz-Zeta
function3. This function’s properties have been con-
sidered previously, and it can be shown using standard
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techniques24,37 that

n=+∞
∑

n=−∞

1

(n+ q)− (m+ p)
= π cotπ(q − p). (34)

Hence equation (33) may be written as

1

3
= π−

∫ +ā

−ā

s(q) cotπ(q − p)dq

with p ∈ (−ā,+ā). (35)

In order to progress with finding a solution to equation
(35) we follow the ideas in Muskhelishvili30 and project
(35) into the complex plane by making the substitutions
Q = exp(2πiq), P = exp(2πip), S(Q) = s(q) and α0 =
exp(2πiā). Then equation (35) may be written as

1

3
= −

∫

A

S(Q)

Q− P
dQ for P ∈ A. (36)

Here A is the part of the unit circle in the complex plane
connecting α∗

0 and α0, where α
∗

0 is the complex conjugate
of α0. Equation (36) may be inverted using results in
Estrada et al.10 to give

S(P ) =
1

3π

P + c2
√

(P − α0)(α∗

0 − P )
for P ∈ A. (37)

Where c2 is an undetermined complex constant. So that
the function s is purely real, and so that it is anti-
symmetric on the domain (−ā,+ā), c2 is set equal to
minus one. This allows the function s to be written in
terms of p as

s(p) =
1

3π

sin(πp)
√

sin(π(a+ p)) sin(π(ā− p))
. (38)

Using equations (19) and (38) and following the steps
outlined in section III gives

H2 =
4

3

µ(1− ρ)

ρ

∫ +ā

−ā

sin(πp)
√

sin(π(ā+ p)) sin(π(ā− p))
dp.

(39)
The integral in equation (39) may be calculated and im-
posing that H(−p) = H(+p) = 0 gives

H2 =
4

3

µ(ρ− 1)

ρ
ln

(

cos(πp) +
√

cos2(πp)− cos2(πā)

cos(πā)

)

.

(40)
In order to close the problem a value for ā must be found.
In the same way as sections IV and VI the following con-
dition on the total amount of fluid in each film is imposed

∫ +ā

−ā

Hdp =M∞. (41)

For the purposes of demonstration we choose to use
the example of M∞ = 1 and 2µ

3
ρ−1
ρ = 1. In this case

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

p

H

FIG. 7. H(p) for M∞ = 1 and 2µ
3

ρ−1
ρ

= 1.

it can be shown numerically that ā ≈ 0.3438. The
predicted profile for H is shown in figure 7.

Note that it can be systematically shown, by expanding
equation (35) for small ā, that the problem studied in
this section reduces to the problem for a single spreading
film. This corresponds to films being very well separated
and are therefore not significantly affected by the flow
generated by neighbouring films.

VIII. BEHAVIOUR AT THE FRONT

In sections IV, VI and VII, the problems of a single
spreading film, two spreading films and an infinite pe-
riodic array of spreading films have been studied. We
note that a challenge inherent in dealing with more gen-
eral configurations of films comes when computing the
more complex counterparts of the integrals derived from
equations (17) and (19). Many of the integrands exhibit
singular behaviour near at the endpoints of the integral
and due to the absence of analytical solutions, the inte-
grals may have to be computed numerically. It is there-
fore useful to understand the nature of these singularities
analytically.
For the case of a single spreading film it is straight

forward to determine these behaviours. Examination of
equation (21) shows

s ∼ K0 (φ1 + φ)
−1/2

as φ→ −φ+1 , (42)

s ∼ K1 (φ1 − φ)
−1/2

as φ→ +φ−1 . (43)

Furthermore, direct inspection of equation (22) shows

H ∼ K2 (φ1 + φ)
1/4

as φ→ −φ+1 , (44)

H ∼ K3 (φ1 − φ)
1/4

as φ→ +φ−1 . (45)

HereKi are constants (which, in this case, could be found
from the exact solutions (21) and (22)). For the case of
two spreading films equations (28) and (30) reveal that
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the asymptotic behaviours of both s and H also take
the forms (42) - (45). This can also be shown to be
true for an infinite periodic array of films by expanding
trigonometric terms in equation (38) and (40).
In light of the fact that all the cases examined thus

far appear to have a generic behaviour near the fronts of
each film one might anticipate that this is the case for
any spreading film. In order to support this claim we
pose the following generalised problem.
Equation (17) is a relationship that has been derived

by seeking a distribution of Stokeslets that will satisfy a
given velocity condition along the fluid-fluid surface, see
section III. Thus far, in the current study the velocity
condition to be satisfied has been U(φ, 0) = φ/3 for φ ∈
F . To answer the aforementioned question we introduce
a general, but well behaved, function UG(φ) (with the
property that UG(0) = 0) and assume that the velocity
condition to be satisfied is U(φ, 0) = UG(φ) for φ ∈ F .
We also introduce a film that has a front at φ = φG and
lies in φ > φG. Following the working in section III and
carrying out an analysis local to φ = φG an equation that
takes the form

dUG

dφ
= −

∫

∞

φG

s(Φ)

Φ− φ
dΦ with φ ∈ (φG,+∞), (46)

is derived. In order to understand the behaviour of the
film near its front the behaviour of s as φ → φ+G must
first be determined. By introducing a constant δ, such
that δ ≪ 1 but φ < φG+ δ equation (46) may be written
as

dUG

dφ
= −

∫ φG+δ

φG

s(Φ)

Φ− φ
dΦ+

∫

∞

φG+δ

s(Φ)

Φ− φ
dΦ. (47)

Assuming that s blows-up but is still integrable as φ →
φ+G motivates expanding s ∼ K(φ − φG)

−p as φ → φ+G
with 0 < p < 1 and K a constant. This gives

dUG

dφ
=−

∫

∞

φG

K(Φ− φG)
−p

Φ− φ
dΦ

+

∫

∞

φG+δ

f(Φ)−K(Φ− φG)
−p

Φ− φ
dΦ. (48)

Substituting z − φG = φu in the first term on the RHS
of equation (48) gives

dUG

dφ
=−Kφ−p−

∫

∞

0

u−p

1− u
du

+

∫

∞

φG+δ

f(Φ)−K(Φ− φG)
−p

Φ− φ
dz. (49)

Recalling the result

−

∫

∞

0

u−p

1− u
du = −π cot(πp), (50)

allows equation (49) to written as

dUG

dφ
=K(φ− φG)

−pπ cot(πp)

+

∫

∞

δ

f(Φ)−K(Φ− φG)
−p

Φ− φ
dΦ. (51)

To determine the asymptotic behaviour of s as φ → φ+G
the terms in equation (51) are examined. By assumption,
the term on the LHS is bounded. Assuming that s is well
behaved on the domain (φG,+∞), a physically reason-
able expectation, the second term on the RHS converges,
and so it too is bounded. It follows that the first term
on the RHS must also be bounded as φ → φ+G. In order
for this to be true the exponent p = 1/2, since 0 < p < 1
and cotπ/2 = 0. Hence

s ∼ K4(φ− φG)
−1/2 as φ→ φ+G, (52)

and using equation (19) it can be seen that

H ∼ K5(φ− φG)
1/4 as φ→ φ+G, (53)

where Ki are constants. Hence, provided that the
velocity along the fluid-fluid surface is well behaved, the
profile of any spreading film close to its fronts has the
form (53). We note that the singular behaviour exhibited
by equation (52) has been reported on previously by
Lister et al.26 and by Moffatt28. The structure of the
singularity is also closely related to that seen in the
problem for flow past an ellipsoid as considered by
Hinch16 and Jeffery23.

IX. FLOW IN THE FAR FIELD

In this section we discuss some of the aspects of the far
field flow generated by the spreading of several symmet-
rically arranged viscous films. In section III it was shown
that the flow in the pool can be described by a symmet-
ric distribution of Stokeslets along the pool’s surface (i.e.
along θ = 0). Therefore, far from the spreading films,
the flow in the pool can be approximated by the flow
generated by a dipole singularity of strength, B, say. Of
course, the effective dipole strength B depends on prop-
erties of the spreading films. These properties are the
film’s mass (or equivalently their length) and the posi-
tion of each film. In principal it is possible to determine
the value of B by solving equation (17) and then com-
puting

B =

∫

F+

s(φ)dφ. (54)

In the special cases of a single spreading film and two
spreading films this process is straight-forward. Using
the result (21) the effective dipole strength for a single
spreading film of length 2φ1 is given by

φ1
3π
. (55)

Using the result (28) the effective dipole strength for two
spreading films separated by a distance 2φ1 and each with
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length φ3/2 − φ1 is given by

1

12πφ3/2



4φ3/2
2 EllipticE





√

φ3/2
2 − φ21

φ3/2





−(φ3/2 − φ1)
2 EllipticK





√

φ3/2
2 − φ21

φ3/2







 . (56)

However, in more complicated examples (where there are
more films), equation (17) has solution (27) which cannot
readily be used in equation (54) to compute B. In these
cases B could be computed numerically. Alternatively,
it might be possible to find the quantity (54) without
finding s(φ) explicitly, however whether this is possible
remains an open question.

X. CONCLUSIONS

A systematic derivation has been given for the
equations that govern the spreading of several films of
viscous fluid on the surface of a deep pool of more dense
viscous fluid. In the parameter regime of interest it has
been shown that the dominant force balance is between
the gravitational force due to the buoyant layers and
the shear stress induced on the films by the viscous
stress of the deep pool. As a consequence, the resulting
expression for the evolution of the spreading films is
independent of their viscosity, and only depends on the
density of the films and the density and viscosity of the
pool on which they float. It has also been shown that
the way in which the films float on the surface of the
pool is determined by a relationship that is consistent
with Archimedes’ principle.

For the special case of a symmetric arrangement of
films it has been predicted that the position of any front
moves proportional to t1/3 and hence the speed of a front
is proportional to t−2/3. Furthermore, this means that
any two adjacent fronts will separate with a distance
proportional to t1/3. For a single spreading film, two
spreading films and an infinite periodic array of films
analytical descriptions of the films evolution are derived
((22), (30) and (40)) as well as numerical description of
flow generated in the underlying pool. It has also been
shown that the model predicts that the gradient of the
profile of any fluid film near its front is infinite and close
to this front the profile is proportional to x1/4.
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